Zafran Ullah | Photocatalyst | Best Researcher Award

Mr. Zafran Ullah | Photocatalyst | Best Researcher Award

Sunway University | Pakistan

Mr. Zafran Ullah is a dedicated PhD student at the School of Engineering, Sunway University, Malaysia, specializing in chemical engineering and sustainable chemical processes. He holds a Master’s degree in Chemical Engineering from Universitas Diponegoro (UNDIP), Indonesia, awarded through a fully funded UNDIP scholarship. With over four years of research experience in academia, Zafran has contributed significantly to the field, publishing more than eight articles in renowned international journals including Elsevier, Analytical Sciences, Springer, and The Journal of Biological and Chemical Luminescence. His research primarily focuses on biomass conversion into value-added chemicals via TiO₂ photocatalysis, bridging fundamental chemical engineering principles with applied sustainable technologies. He has completed and is engaged in three research projects, collaborating with five international researchers, and serves as a reviewer for multiple scientific journals. According to Scopus, he has 34 citations across 3 documents and an h-index of 2, reflecting the growing impact of his research contributions. Zafran’s work emphasizes innovation in green chemistry, photochemical catalysis, and industrially relevant biomass valorization, aiming to provide practical solutions for energy and chemical sustainability challenges. He actively participates in consultancy and collaborative research projects, contributing to knowledge dissemination through peer-reviewed publications and scientific collaborations. His ongoing studies and professional engagements demonstrate a strong commitment to advancing chemical engineering research with societal and environmental relevance.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Raza, M., Farooq, U., Khan, S. A., Ullah, Z., Khan, M. E., Ali, S. K., Bakather, O. Y., …. (2024). Preparation and spectrochemical characterization of Ni-doped ZnS nanocomposite for effective removal of emerging contaminants and hydrogen production: Reaction kinetics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124513. (Cited by 33)

Altaf, R., Ullah, Z., Darko, D. A., Iqbal, A., Khan, M. S., & Asif, M. (2022). Molecularly imprinted polymers for the detection of chlorpyrifos (an organophosphate pesticide). ASEAN Journal of Science and Engineering, 2(3), 257–266. (Cited by 11)

Jabbar, S., Khan, A. K., Hanif, H. M. B., Ammar, M., Ashraf, I., Khadija, A., Khalid, A., … Ullah, Z. (2022). The prevalence, severity and the contributive organizational factors of burnout syndrome among Pakistani physiotherapists. International Journal of Natural Medicine and Health Sciences, 1(3). (Cited by 6)

Khan, M. N., Jan, M. N., & Ullah, Z. (2023). Environmentally friendly protocol for the determination of sitagliptin phosphate in pharmaceutical preparations and biological fluids using l-tyrosine as a probe. Luminescence, 38(10), 1803–1813. (Cited by 4)

Khan, M. N., Zaman, N., Mursaleen, M., Naz, F., & Ullah, Z. (2022). Eco-friendly approach for determination of moxifloxacin in pharmaceutical preparations and biological fluids through fluorescence quenching of eosin Y. Analytical Sciences, 38(12), 1541–1547. (Cited by 2)

Ullah, Z., Ariyant, D., Simk, W., Aamir, A., Khan, M., Ulla, Y., & Kha, A. (2023). Advancements in the conversion of lingo biomass to glucose with photocatalysts. European Chemical Bulletin, 12, 16498–16515. (Cited by 1)

Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Prof. Dr. Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Professor at Pontifical Catholic University of Rio de Janeiro | Brazil

Prof. Dr. Rogério Navarro Correia de Siqueira is a faculty member in the Department of Chemical and Materials Engineering at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), where he earned his Ph.D. and has served as an adjunct professor. His research spans nanomaterials synthesis, bio-based materials processing, and thermodynamic modeling of non-ideal systems, with significant contributions in the development of oxidized nanocatalysts supported by cellulose nanofibers for hydrogen generation, adsorption of transition metals from aqueous solutions, and the design of hybrid nanomaterials for energy storage and sustainable energy applications. Prof. Siqueira has led multiple projects, including two completed and two ongoing funded research initiatives, alongside consultancy experience and patent development, reflecting both academic and industrial engagement. He has published 26 papers in international journals indexed in Scopus and Web of Science, has served as guest editor for special issues in Minerals and Metals (MDPI), and actively collaborates with leading institutions such as TU-Berlin, UERJ, and UFOP on advanced nanocatalyst design and CO₂ capture modeling. According to Scopus, his work has been cited 167 times, and he has an h-index of 9, reflecting an emerging but growing impact in nanomaterials and energy transition research. His contributions to efficient computational methods for vapor–liquid equilibria, adsorption studies on functionalized nanocellulose, and catalytic hydrogen generation highlight his role in advancing sustainable materials science and metallurgical engineering applications. Prof. Siqueira continues to build international recognition through innovative approaches that bridge fundamental research with real-world energy solutions.

Profile: Scopus | ORCID

Feautured Publications

Braz, W. F., Teixeira, L. T., Navarro, R., & Pandoli, O. G. (2025). Nanocellulose application for metal adsorption and its effect on nanofiber thermal behavior. Metals, 15(8), 832.

Rego, A. S. C., Navarro, R. C. S., Brocchi, E. A., & Souza, R. F. M. (2024). Kinetic study on the thermal decomposition of iron (II) sulfate using a global optimization approach. Materials Chemistry and Physics, 304, 129869.

Moreira, P. H. L. R., Siqueira, R. N. C., & Vilani, C. (2024). A simple chemical equilibrium algorithm applied for single and multiple reaction systems. Computer Applications in Engineering Education, 32(3), 987–1004.

Teixeira, L. T., Lima, S. L. S. de, Rosado, T. F., Liu, L., Vitorino, H. A., dos Santos, C. C., Mendonça, J. P., Garcia, M. A. S., Siqueira, R. N. C., & da Silva, A. G. M. (2023). Sustainable cellulose nanofibers-mediated synthesis of uniform spinel Zn-ferrites nanocorals for high performances in supercapacitors. International Journal of Molecular Sciences, 24(11), 9169.

Teixeira, L. T., Braz, W. F., Siqueira, R. N. C., Pandoli, O. G., & Geraldes, M. C. (2021). Sulfated and carboxylated nanocellulose for Co²⁺ adsorption. Journal of Materials Research and Technology, 15, 123–135.

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Research scholar at Federal University of Rio Grande |  Brazil

Prof. Dr. Michele Greque de Morais is a distinguished scholar at the Federal University of Rio Grande, recognized for her pioneering research in food engineering, biotechnology, and nanobiotechnology. She earned her degrees in Food Science and Engineering at FURG, complemented by international academic experiences at Philipps-Universität Marburg in Germany, the Scripps Institution of Oceanography, and the University of California, San Diego. Her scientific output is extensive, with over 150 peer-reviewed journal articles, 56 book chapters, 58 published books, and more than 200 conference papers. She has also contributed significantly to innovation with 27 patents and the development of 13 technological products. According to Scopus, she has authored 185 indexed works, accumulating 7246 citations with a robust h-index of 47, reflecting the global impact and recognition of her research contributions. Beyond academia, she has led 33 completed and 23 ongoing research projects, partnered with industries in 16 consultancy projects, and played key roles in national and international collaborations focused on sustainable development, microalgae-based bioproducts, and carbon biofixation technologies. Her editorial leadership includes serving as Associate Editor for Bioresource Technology. She has supervised numerous graduate and postgraduate students, shaping future generations of researchers, and has been recognized among the world’s most influential scientists by PLOS Biology. Through her dedication to advancing sustainable bioprocesses, food security, and biotechnology applications, Professor Michele Greque de Morais has established herself as a leading researcher with a profound impact on both scientific knowledge and societal development

Pofile: ScopusORCID | Google Scholar

Featured Publication

De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.

De Morais, M. G., Vaz, B. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015(1), 835761.

De Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal-fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173.

De Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9.

da Silva Vaz, B., Moreira, J. B., De Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77.