Sun-Dong Kim | Water Electrolysis | Best Researcher Award

Dr. Sun-Dong Kim | Water Electrolysis | Best Researcher Award

Chief at Korea Institute of Energy Research | South Korea

Dr. Sun-Dong Kim is a distinguished materials scientist from the Republic of Korea, renowned for his expertise in ceramic engineering, fuel cell systems, and clean hydrogen technologies. He obtained both his bachelor’s and doctoral degrees in Ceramic Engineering from Yonsei University, Seoul. Dr. Kim began his professional career as a Principal Researcher at Hyundai Motor Corporation and later joined the Korea Institute of Energy Research (KIER), where he currently serves as Chief and Head of the National Hydrogen Hub Laboratory. He has also contributed to academia as an Associate Professor at the University of Science and Technology and serves on the Board of Directors of the Korean Hydrogen & New Energy Society. With 47 Scopus-indexed publications and 1,505 citations, Dr. Kim holds an h-index of 22, reflecting his strong influence in the field of solid oxide electrolysis cells (SOECs), solid oxide fuel cells (SOFCs), and high-temperature electrochemical systems. His work has appeared in top-tier journals such as Journal of Power Sources, Ceramics International, and Applied Energy. Beyond publications, Dr. Kim has been a key innovator in energy materials, contributing to over 70 patents in hydrogen production, electrochemical device engineering, and advanced fuel cell technologies, solidifying his leadership in advancing clean and sustainable hydrogen manufacturing research.

Profile: Scopus | ORCID | Google Scholar

Featured Publications

Kim, S. D., Hyun, S. H., Shin, M. Y., Lim, T. H., Hong, S. A., & Lim, H. C. (2005). Phase and microstructure stabilities of LiAlO₂ in molten Li/Na carbonate for molten carbonate fuel cells. Journal of Power Sources, 143(1–2), 24–29. Cited by 28 documents.

Hong, G., Kim, T. W., Kwak, M. J., Song, J., Choi, Y., Woo, S. K., & Kim, S. D. (2020). Composite electrodes of Ti-doped SrFeO₃–δ and LSGMZ electrolytes as both the anode and cathode in symmetric solid oxide fuel cells. Journal of Alloys and Compounds, 846, 156154. Cited by 27 documents.

Choi, H. J., Na, Y. H., Kwak, M., Kim, T. W., Seo, D. W., Woo, S. K., & Kim, S. D. (2017). Development of solid oxide cells by co-sintering of GDC diffusion barriers with LSCF air electrode. Ceramics International, 43(16), 13653–13660. Cited by 26 documents.

Choi, H. J., Kim, T. W., Na, Y. H., Seo, D. W., Woo, S. K., Huh, J. Y., & Kim, S. D. (2018). Enhanced electrochemical performance of metal-supported solid oxide fuel cells via an inner coating of Gd₀.₁Ce₀.₉O₂–δ nanosol in the porous NiFe-metal support. Journal of Power Sources, 406, 81–87. Cited by 25 documents.

Kim, S. D., Hyun, S. H., Lim, T. H., & Hong, S. A. (2004). Effective fabrication method of rod-shaped γ-LiAlO₂ particles for molten carbonate fuel cell matrices. Journal of Power Sources, 137(1), 24–29. Cited by 21 documents.

Vladimir Atanasov | Fuel Cell | Excellence in Research Award

Dr. Vladimir Atanasov | Fuel Cell | Excellence in Research Award

Team Leader at University of Stuttgart | Germany

Dr. Vladimir Milanov Atanasov is a distinguished researcher in polymer and membrane technology with more than 25 years of international experience in the field of chemical and polymer engineering. He currently serves as Team Leader for Polymer and Membrane Technology at the Institute of Chemical Process Engineering, University of Stuttgart. Born and educated in Bulgaria, he earned his M.Sc. in Organic and Analytical Chemistry from Sofia State University, followed by a Ph.D. under the supervision of Prof. Müllen at the Max Planck Institute for Polymer Research, Mainz. Dr. Atanasov has held several prestigious postdoctoral appointments, including at the MPI for Polymer Research, MPI for Solid State Research, and the University of Stuttgart, where his work focused on fuel cell and biomembrane applications. His expertise spans polymer electrolyte membrane (PEM) preparation, advanced polymerization techniques, post-modification methods, and organic synthesis, particularly in phosphonated and sulfonated fluoro-arylenes and functionalized lipids. He is skilled in a wide range of characterization techniques, including EIS, DMA, NMR, MALDI-ToF, GPC, DSC, and FTIR. Dr. Atanasov has authored 33 scientific documents, including 35 peer-reviewed papers, and holds three patents. His contributions have been cited over 1,181 times, and his current Scopus profile reflects an h-index of 16. His ongoing research focuses on the development and characterization of novel polymer electrolyte membranes for high-temperature proton exchange membrane fuel cells (HT-PEMFC), combining innovative materials and advanced film-forming techniques to enhance efficiency and durability in energy applications.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Atanasov, V., Knorr, N., Duran, R. S., Ingebrandt, S., Offenhäusser, A., & Knoll, W. (2005). Membrane on a chip: A functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophysical Journal, 89(3), 1780–1788. Cited by: 250

Schuster, M., de Araujo, C. C., Atanasov, V., Andersen, H. T., Kreuer, K. D., & Maier, J. (2009). Highly sulfonated poly (phenylene sulfone): Preparation and stability issues. Macromolecules, 42(8), 3129–3137. Cited by: 204

Atanasov, V., Lee, A. S., Park, E. J., Maurya, S., Baca, E. D., Fujimoto, C., Hibbs, M., & others. (2021). Synergistically integrated phosphonated poly (pentafluorostyrene) for fuel cells. Nature Materials, 20(3), 370–377. Cited by: 198

Lim, K. H., Lee, A. S., Atanasov, V., Kerres, J., Park, E. J., Adhikari, S., Maurya, S., & others. (2022). Protonated phosphonic acid electrodes for high power heavy-duty vehicle fuel cells. Nature Energy, 7(3), 248–259. Cited by: 162

Atanasov, V., Atanasova, P. P., Vockenroth, I. K., Knorr, N., & Köper, I. (2006). A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjugate Chemistry, 17(3), 631–637. Cited by: 94

Atanasov, V., & Kerres, J. (2011). Highly phosphonated polypentafluorostyrene. Macromolecules, 44(16), 6416–6423. Cited by: 93

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Research scholar at Federal University of Rio Grande |  Brazil

Prof. Dr. Michele Greque de Morais is a distinguished scholar at the Federal University of Rio Grande, recognized for her pioneering research in food engineering, biotechnology, and nanobiotechnology. She earned her degrees in Food Science and Engineering at FURG, complemented by international academic experiences at Philipps-Universität Marburg in Germany, the Scripps Institution of Oceanography, and the University of California, San Diego. Her scientific output is extensive, with over 150 peer-reviewed journal articles, 56 book chapters, 58 published books, and more than 200 conference papers. She has also contributed significantly to innovation with 27 patents and the development of 13 technological products. According to Scopus, she has authored 185 indexed works, accumulating 7246 citations with a robust h-index of 47, reflecting the global impact and recognition of her research contributions. Beyond academia, she has led 33 completed and 23 ongoing research projects, partnered with industries in 16 consultancy projects, and played key roles in national and international collaborations focused on sustainable development, microalgae-based bioproducts, and carbon biofixation technologies. Her editorial leadership includes serving as Associate Editor for Bioresource Technology. She has supervised numerous graduate and postgraduate students, shaping future generations of researchers, and has been recognized among the world’s most influential scientists by PLOS Biology. Through her dedication to advancing sustainable bioprocesses, food security, and biotechnology applications, Professor Michele Greque de Morais has established herself as a leading researcher with a profound impact on both scientific knowledge and societal development

Pofile: ScopusORCID | Google Scholar

Featured Publication

De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.

De Morais, M. G., Vaz, B. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015(1), 835761.

De Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal-fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173.

De Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9.

da Silva Vaz, B., Moreira, J. B., De Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77.

Jian Pan | Direct reduction | Best Researcher Award

Prof. Jian Pan | Direct reduction | Best Researcher Award

Deputy director at Central South University, China.

Pan Jian is a distinguished professor and doctoral supervisor at Central South University (CSU), where he serves as the deputy director of the Low Carbon and Hydrogen Metallurgy Research Center. He also holds editorial positions at prominent journals, including the Journal of Iron and Steel Research, China Metallurgy, and Sintering and Pelletizing. As a member of The Minerals, Metals & Materials Society (TMS) and the Australasian Institute of Mining and Metallurgy (AusIMM), Pan Jian is an internationally recognized expert in his field. His work focuses on innovative approaches to metallurgy, earning him prestigious accolades such as the National Science and Technology Progress Second Prize and the Baosteel Excellent Teacher Award. With over 120 published papers and 58 invention patents, Pan Jian is a leading voice in advancing low-carbon and hydrogen metallurgy.

Professional Profiles📖

Scopus

Education 🎓

Pan Jian’s academic journey began with a bachelor’s degree in minerals processing from Central South University, where he laid the foundation for his future research in sustainable metallurgical techniques. He continued his studies at the same institution, earning a master’s degree in 2003 and culminating in a Doctor of Engineering degree in 2007. Throughout his education, Pan Jian demonstrated a commitment to innovation, focusing on the development of efficient, low-carbon technologies that would later define his career. His academic excellence has been integral to his contributions to the field of metallurgy.

Professional Experience💼

Pan Jian’s professional journey spans both academia and industry, showcasing a blend of theoretical knowledge and practical expertise. Currently, he serves as a professor at Central South University, a position he has held since 2015. Before this, he worked as an associate professor from 2009 to 2015 and as a lecturer from 2003 to 2009 at the same institution. His international experience includes serving as a visiting scientist at CSIRO Minerals Group in Australia from 2014 to 2015. Earlier in his career, he gained industry experience as an associate engineer at the Lianyuan Steel Company, part of the Valin Group. These roles have allowed Pan Jian to develop a comprehensive understanding of both academic research and its industrial applications.

Research Focus 🔍

Pan Jian’s research focuses on developing innovative and sustainable metallurgical processes. He specializes in the theory and application of iron ore sintering and pelletizing, aiming to enhance efficiency and reduce environmental impact. His work in low-carbon and hydrogen metallurgy is pioneering new methods for cleaner production, aligning with global sustainability goals. Additionally, Pan Jian is dedicated to the efficient utilization of solid waste resources, transforming industrial by-products into valuable materials. His research bridges the gap between industrial needs and environmental stewardship, positioning him as a leader in sustainable metallurgy.

Conclusion ✅

Professor Pan Jian exemplifies the qualities of an exceptional researcher, blending academic excellence with practical innovation. His contributions to low-carbon metallurgy and resource efficiency align with global sustainability goals, making him a strong candidate for the Best Researcher Award. Addressing areas for improvement, particularly in interdisciplinary and international collaboration, could further enhance his impact and visibility.

📚Publications to Noted

Hydrogen-based direct reduction behavior of iron ore pellets with iron grades ranging from 59% to 68%

Authors: C. Yang, Congcong; L. Wei, Liu; D. Zhu, Deqing; G. Xia, Guanghui; S. Qu, Shijuan

Year: 2025

Effect of pellet size on pellet sintering process of manganese ore fines at natural basicity

Authors: W. Liu, Wei; J. Pan, Jian; D. Zhu, Deqing; X. He, Xiang; W. Zhang, Wuju

Year: 2025

Efficient Removal of Impurities from Refractory Oolitic Magnetite Concentrate via High-Pressure Alkaline Leaching and Ultrasonic Acid Leaching Process

Authors: M. Hu, Mengjie; D. Zhu, Deqing; J. Pan, Jian; S. Li, Siwei; W. Cao, Wen

Year: 2025

Machine Learning-Assisted Multi-Property Prediction and Sintering Mechanism Exploration of Mullite–Corundum Ceramics

Authors: Q. Chen, Qingyue; W. Zhang, Weijin; X. Liang, Xiaocheng; J. Pan, Jian; B. Cheng, Benjun

Year: 2025

New Process for Efficient Separation and Comprehensive Recovery of Valuable Metals from Jarosite Residues

Authors: Q. Zhou, Qi; J. Pan, Jian; D. Zhu, Deqing; S. Li, Siwei; X. Xu, Xianqing

Year: 2025

Stepwise recovery of Zn, In, Ga, and Fe from jarosite residue through oxidizing roasting−direct reduction−smelting−electrorefining process

Authors: D. Zhu, Deqing; T. Dong, Tao; J. Pan, Jian; C. Yang, Congcong; Y.X. Xue, Yu Xiao

Year: 2025

Optimization of four-component furnace burdens with hydrogen-reduced metallized pellets based on blast furnace performance

Authors: Q. Chen, Qingyue; J. Pan, Jian; Z. Guo, Zhengqi; D. Zhu, Deqing

Year: 2025

Impact of SiO2 Content on the Hydrogen-Based Direct Reduction of Acidic High-Grade Fired Hematite Pellets

Authors: B. Li, Bohua; D. Zhu, Deqing; Z. Guo, Zhengqi; J. Pan, Jian; S. Li, Siwei

Year: 2025

Utilization of High-Silicon Iron Ore Tailings for 4N8 High-Purity Quartz Powder Production via Two-Stage Acid Leaching

Authors: H. Long, Hailin; X. Xu, Xianqing; S. Li, Siwei; J. Pan, Jian; Z. Guo, Zhengqi

Citations: 1

Year: 2025

Self-reforming of coke oven gas in gas-based shaft furnace: thermodynamic analysis and reforming mechanism

Authors: C. Tang, Chenmei; S. Shi, Shubing; J. Pan, Jian; C. Yang, Congcong; S. Li, Siwei

Year: 2025