Fu Lei | Corrosion Fatigue | Best Researcher Award

Prof. Fu Lei | Corrosion Fatigue | Best Researcher Award

Professor at Sichuan University of Science & Engineering | China

Professor Fu Lei, a distinguished materials scientist at Sichuan University of Science and Engineering, specializes in fatigue, fracture, and structural reliability of metallic systems. His research bridges experimental and computational mechanics, focusing on failure prediction, damage evolution, and fatigue-corrosion interactions in advanced alloys and composites. He has led more than 30 national and regional projects, notably under the National Natural Science Foundation of China, covering aerospace, nuclear, and new-energy applications. His Scopus record lists 32 documents, 127 citations, and an h-index of 7, demonstrating sustained scientific impact. His studies on hydrogen-induced fracture, micro-defect propagation, and microbiologically influenced corrosion have refined theoretical and experimental understanding of structural materials under coupled stresses. Beyond research, he has authored a monograph and contributed to developing fatigue-testing standards and additive-manufacturing methods for UAV composites and biomedical implants. Serving as Deputy Director of multiple provincial research centers, he fosters collaborative R&D between academia and industry, enabling technology transfer in functional materials and mechanical systems. Professor Fu’s integrated approach to mechanics, reliability engineering, and materials innovation underscores his global leadership and positions him as a top candidate for recognition under the Best Researcher Award.

Profiile : Scopus

Featured Publications

Fu, L., et al. (2025). Experimental study of the hydrogen fracture behavior of 30CrMo steel and simulation of hydrogen diffusion. JOM, [Advance online publication].

Fu, L., et al. (2025). Modification of graphene oxide composite coating on 7075 aluminum alloy and protection against Aspergillus niger corrosion. Anti-Corrosion Methods and Materials, [Advance online publication].

Fu, L., et al. (2025). Mechanics and long-term stability of porous titanium scaffolds with rhombic dodecahedrons. Journal of Materials Engineering and Performance, [Advance online publication].

 

Qian Li | Minerals Engineering | Pioneer Researcher Award

Prof. Qian Li | Minerals Engineering | Pioneer Researcher Award

Professor at University of South China | China

Prof. Qian Li, a distinguished scholar in biohydrometallurgy at the University of South China, has made exceptional contributions to understanding microbial processes in mineral engineering, particularly uranium bioleaching and residue stabilization. His research integrates microbiological mechanisms with mineral system engineering to address challenges in uranium extraction and environmental remediation. He has directed numerous national and provincial research projects focused on the behavior of iron/sulfur-oxidizing bacterial consortia, in-situ passivation of uranium residues, and eco-friendly leaching technologies. Prof. Li’s innovative studies on biogenic coatings, microbial oxidation, and nanobubble-assisted leaching have introduced new approaches to sustainable metal recovery and waste control. His extensive publication record exceeds 80 research articles in reputed journals including Journal of Hazardous Materials, Frontiers in Microbiology, and Journal of Cleaner Production, showcasing his interdisciplinary expertise and technical leadership. As documented in his Scopus profile, he has accumulated over 4,651 citations, 289 indexed documents, and an h-index of 39, underscoring his scientific impact and recognition within the international minerals engineering community. Through his pioneering work on microbial-mineral interactions, Prof. Li continues to advance the field toward cleaner and more efficient resource utilization, establishing himself as a leading figure in metallurgical and environmental biotechnology.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Li, S., Xiao, L., Sun, J., Li, Q., Li, G., Cui, Z., Li, T., & Zhou, X. (2025). Biogenic jarosite coating as an innovative passivator for acidic uranium residue stabilization using Acidithiobacillus ferrooxidans. Journal of Hazardous Materials, 471, 140229. DOI: 10.1016/j.jhazmat.2025.140229

Xiao, L., Li, S., Liu, X., Sun, J., Li, G., Cui, Z., Li, T., & Li, Q. (2024). Linked variations of bioleaching performance, extracellular polymeric substances (EPS) and passivation layer in the uranium bacterial-leaching system. Journal of Radioanalytical and Nuclear Chemistry, 334, 637–651. DOI: 10.1007/s10967-024-09851-6

Li, Q., Liu, X., Ma, J., Sun, J., Li, G., Cui, Z., & Li, T. (2023). Bidirectional effects of sulfur-oxidizer Acidithiobacillus thiooxidans in uranium bioleaching systems with or without sulfur by mixed acidophilic bacteria. Journal of Radioanalytical and Nuclear Chemistry, 332, 1787–1794. DOI: 10.1007/s10967-023-08841-4

Sun, J., Ma, J., Li, Q., Li, G., Shi, W., Yang, Y., Hu, P., & Guo, Z. (2022). Role of Fe/S ratios in the enhancement of uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium. Journal of Central South University, 29(12), 3858–3869. DOI: 10.1007/s11771-022-5216-1

Yang, Y., Li, Q., Li, G., Ma, J., Sun, J., Liu, X., Cui, Z., & Li, T. (2022). Depth-induced deviation of column bioleaching for uranium embedded in granite porphyry by defined mixed acidophilic bacteria. Journal of Radioanalytical and Nuclear Chemistry, 331, 3681–3692. DOI: 10.1007/s10967-022-08418-7

Chen, Z., Li, Q., Yang, Y., Sun, J., Li, G., Liu, X., Shu, S., Li, X., & Liao, H. (2022). Uranium removal from a radioactive contaminated soil by defined bioleaching bacteria. Journal of Radioanalytical and Nuclear Chemistry, 331, 439–449. DOI: 10.1007/s10967-021-08077-0

Abid Hussain | Shape Memory Alloys | Best Researcher Award

Dr. Abid Hussain | Shape Memory Alloys | Best Researcher Award

Lab Engineer at University of Engineering and Technology, Peshawar | Pakistan

Dr. Abid Hussain is a mechanical and materials engineer recognized for his multidisciplinary research in advanced alloys, renewable energy technologies, and computational modeling. His studies focus on the development and enhancement of TiNiPdCu-based shape memory alloys produced via powder metallurgy, targeting high-temperature applications in energy and aerospace systems. He has also explored solar-driven water purification, Stirling engine design, and absorption cooling systems that integrate sustainable energy sources. Dr. Hussain’s research extends into computational fluid dynamics and structural analysis, emphasizing the mechanical performance of engineered systems under diverse environmental and seismic conditions. His publication record reflects a strong commitment to materials innovation, energy efficiency, and environmental sustainability. With 69 citations, 9 indexed documents, and an h-index of 5 in Scopus, Dr. Hussain continues to contribute impactful knowledge that advances metallurgical and mechanical engineering frontiers globally.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Manzoor, F., Wei, L., Hussain, A., Asif, M., & Shah, S. I. A. (2019). Patient satisfaction with health care services: An application of physician’s behavior as a moderator. International Journal of Environmental Research and Public Health, 16(18), 3318. Cited by 649 documents.

Klein Tank, A. M. G., Peterson, T. C., Quadir, D. A., Dorji, S., Zou, X., Tang, H., … Hussain, A. (2006). Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research: Atmospheres, 111(D16). Cited by 630 documents.

Qing, M., Asif, M., Hussain, A., & Jameel, A. (2020). Exploring the impact of ethical leadership on job satisfaction and organizational commitment in public sector organizations: The mediating role of psychological empowerment. Review of Managerial Science, 14(6), 1405–1432. Cited by 515 documents.

Cheema, M. A., Malik, M. A., Hussain, A., Shah, S. H., & Basra, S. M. A. (2001). Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus L.). Journal of Agronomy and Crop Science, 186(2), 103–110. Cited by 308 documents.

Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., & … (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. Cited by 306 documents.

Syeda Naveed Kazmi | Fluid Mechanics | Best Researcher Award

Syeda Naveed Kazmi | Fluid Mechanics | Best Researcher Award

Lecturer at Mirpur University of Science and Technology | Pakistan

Dr. Syeda Naveed Kazmi is a Senior Lecturer in Mathematics at Mirpur University of Science and Technology (MUST), Pakistan, specializing in heat transfer analysis for peristaltic transport of Newtonian and non-Newtonian nanofluids. She completed her Ph.D. in Mathematics from COMSATS University Islamabad, following an M.Sc. from the University of Azad Jammu & Kashmir. Dr. Kazmi’s research focuses on fluid mechanics, computational fluid dynamics, and nanofluid heat transfer, with a particular emphasis on peristaltic transport mechanisms. She has authored several publications in international journals, including “Entropy generation analysis for hybrid nanofluid mobilized by peristalsis with an inclined magnetic field” in Advances in Mechanical Engineering and “Peristaltic flow under the effects of tilted magnetic field: enhancing heat transfer using graphene nanoparticles” in the International Journal of Modelling and Simulation. Additionally, her work on “Thermal analysis of hybrid nanoliquid containing iron-oxide (Fe3O4) and copper (Cu) nanoparticles in an enclosure” was published in Alexandria Engineering Journal. Her contributions to the field have been recognized internationally, and she continues to advance research in the areas of nanofluid dynamics and heat transfer. Dr. Kazmi’s academic journey reflects a commitment to excellence in research and education in applied mathematics.

Profile: ORCID | Google Scholar

Feautured Publications

Kazmi, S. N., Haq, R. U., & Mekkaoui, T. (2017). Thermal management of water based SWCNTs enclosed in a partially heated trapezoidal cavity via FEM. International Journal of Heat and Mass Transfer, 112, 972–982. Cited by 93.

Qin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., … Kazmi, S. N. (2017). Synthesis and mechanistic studies of curcumin analog‐based oximes as potential anticancer agents. Chemical Biology & Drug Design, 90(3), 443–449. Cited by 47.

Kazmi, S. N., Hussain, A., Rehman, K. U., & Shatanawi, W. (2024). Thermal analysis of hybrid nanoliquid contains iron-oxide (Fe3O4) and copper (Cu) nanoparticles in an enclosure. Alexandria Engineering Journal, 101, 176–185. Cited by 8.

Kazmi, S. N., Abbasi, F. M., & Shehzad, S. A. (2023). An electroosmotic peristaltic flow of graphene-lubrication oil nanofluid through a symmetric channel. Advances in Mechanical Engineering, 15(6), 16878132231177956. Cited by 5.

Kazmi, S. N., Abbasi, F. M., & Iqbal, J. (2024). Double diffusive convection for MHD peristaltic movement of Carreau nanofluid with Hall effects. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems. Cited by 3.

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Research scholar at Federal University of Rio Grande |  Brazil

Prof. Dr. Michele Greque de Morais is a distinguished scholar at the Federal University of Rio Grande, recognized for her pioneering research in food engineering, biotechnology, and nanobiotechnology. She earned her degrees in Food Science and Engineering at FURG, complemented by international academic experiences at Philipps-Universität Marburg in Germany, the Scripps Institution of Oceanography, and the University of California, San Diego. Her scientific output is extensive, with over 150 peer-reviewed journal articles, 56 book chapters, 58 published books, and more than 200 conference papers. She has also contributed significantly to innovation with 27 patents and the development of 13 technological products. According to Scopus, she has authored 185 indexed works, accumulating 7246 citations with a robust h-index of 47, reflecting the global impact and recognition of her research contributions. Beyond academia, she has led 33 completed and 23 ongoing research projects, partnered with industries in 16 consultancy projects, and played key roles in national and international collaborations focused on sustainable development, microalgae-based bioproducts, and carbon biofixation technologies. Her editorial leadership includes serving as Associate Editor for Bioresource Technology. She has supervised numerous graduate and postgraduate students, shaping future generations of researchers, and has been recognized among the world’s most influential scientists by PLOS Biology. Through her dedication to advancing sustainable bioprocesses, food security, and biotechnology applications, Professor Michele Greque de Morais has established herself as a leading researcher with a profound impact on both scientific knowledge and societal development

Pofile: ScopusORCID | Google Scholar

Featured Publication

De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.

De Morais, M. G., Vaz, B. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015(1), 835761.

De Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal-fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173.

De Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9.

da Silva Vaz, B., Moreira, J. B., De Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77.

Xiaoliang Zhao | Engineering | Best Researcher Award

Prof. Xiaoliang Zhao | Engineering | Best Researcher Award

Professor at Liaoning Technical University, China.

Professor Xiaoliang Zhao is a distinguished expert in environmental science and engineering at Liaoning Technical University. As Dean of the School of Environmental Science and Engineering, he leads cutting-edge research in air pollution control and ecological restoration. An executive director of the Chinese Society for Environmental Sciences and a key member of occupational safety committees, Professor Zhao has driven more than 60 major projects, securing over 20 million yuan in funding. He has published 80+ papers, holds 14 invention patents, and is widely recognized for his impactful contributions to mine ecological restoration and pollution control technologies. 💼🔬✨

 

Professional Profiles📖

SCOPUS

Education 🎓

Professor Zhao earned his doctoral degree in environmental science and engineering, focusing on pollution control technologies. He has undergone rigorous training in both academic research and practical applications of environmental protection. His educational background laid a strong foundation for his pioneering work in ecological restoration and air pollution management, helping him bridge theoretical knowledge with industrial innovation. His continuous learning and commitment to environmental sustainability empower him to lead projects funded by national and regional science foundations. 🌟🎓

Professional Experience💼

With decades of experience, Professor Zhao has managed over 20 vertical and 40 horizontal research projects, including national key R&D programs and major science and technology initiatives. His work spans dust control in coal mines, anti-freezing dust suppression, and vegetation restoration in mining areas. He serves as Executive Director of the Chinese Society for Environmental Sciences and participates actively in professional committees on ventilation and occupational safety. His leadership in academia and industry has made him a pivotal figure in environmental innovation in China.🌍🔬

Award and Honors🏅

Professor Zhao’s excellence has been recognized through 12 provincial and ministerial scientific and technological achievement awards. These include prestigious second prizes from the China National Coal Industry Association and the China Occupational Safety and Health Association. His 14 authorized invention patents underscore his innovative prowess. He is also the chief editor of multiple textbooks and has contributed to national standards for mine ecological restoration and mine water reuse, cementing his reputation as a leading authority in environmental engineering.🏅✨

Research Focus 🔍

Professor Zhao’s excellence has been recognized through 12 provincial and ministerial scientific and technological achievement awards. These include prestigious second prizes from the China National Coal Industry Association and the China Occupational Safety and Health Association. His 14 authorized invention patents underscore his innovative prowess. He is also the chief editor of multiple textbooks and has contributed to national standards for mine ecological restoration and mine water reuse, cementing his reputation as a leading authority in environmental engineering.🌍🔧

 

Conclusion ✅

Professor Xiaoliang Zhao’s impressive academic accomplishments, prolific research output, patents, and leadership clearly establish him as a strong candidate for the Best Researcher Award. While expanding international outreach and interdisciplinary collaboration could further amplify his global impact, his current body of work and recognition firmly merit this prestigious award.

📚Publications to Noted

 

Title: Preparation of a vegetable-oil film-type emulsion dust suppressant and adsorption performance study on road dust surface in open-pit coal mines

Authors: S. Xia, Z. Song, X. Zhao, Y. Wen, Y. Li

Year: 2025

Title: Catalytic activity and selectivity of Cerium-Doped catalysts in dichloromethane oxidation

Authors: X. Zhao, Y. Li, H. Wu, S. Feng, J. Du

Year: 2025

Title: Development and test of antifreeze dust inhibitor for truck road in North Surface Coal Mine

Authors: X. Zhao, J. Du, Z. Song, C. Wang, G. Yang

Year: 2025