Mudassir Hussain Tahir | Pyrolysis | Best Researcher Award

Dr. Mudassir Hussain Tahir | Pyrolysis | Best Researcher Award

Associate Professor at Nanjing Forestry University | China

Dr. Mudassir Hussain Tahir is a highly accomplished researcher whose prolific scientific contributions and multidisciplinary impact make him an exceptional candidate for the Best Researcher Award. With 2,411 citations, 119 peer-reviewed publications, and an impressive Scopus h-index of 27, he has established a strong global research footprint in biomass thermochemical conversion, catalytic pyrolysis, heterogeneous catalyst development, sustainable hydrogen-rich syngas production, CO₂ adsorption, bio-based chemical synthesis, and machine-learning-assisted materials discovery. His work has advanced fundamental understanding of pyrolysis kinetics, reactor design, catalyst–feedstock interactions, and waste-to-energy pathways, leading to high-value bio-oils, green chemicals, and sustainable aviation fuel precursors. He has published influential articles in leading journals such as Energy & Fuels, Bioresource Technology, Fuel, International Journal of Hydrogen Energy, Journal of Analytical and Applied Pyrolysis, ACS Omega, and Applied Thermal Engineering, covering both experimental innovation and computational materials design. His research also integrates advanced data-driven methodologies for designing organic semiconductors, dyes, polymers, and photovoltaic materials, positioning him at the frontier of clean energy materials research. In addition to his extensive publication record, he has served as Guest Editor and Review Editor for reputable journals, reflecting strong leadership and recognition within the scientific community. His contributions span renewable energy, waste valorization, catalysis, environmental sustainability, and predictive materials chemistry, demonstrating both depth and breadth in research excellence. Dr. Tahir’s sustained scholarly productivity, high citation impact, and transformative contributions to biomass energy and materials innovation exemplify the qualities of a distinguished and forward-thinking scientist, making him thoroughly deserving of the Best Researcher Award.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Fahanwi Asabuwa Ngwabebhoh | Sustainable Materials | Research Excellence Award

Assist. Prof. Dr. Fahanwi Asabuwa Ngwabebhoh | Sustainable Materials | Research Excellence Award

Research Scientist at Kocaeli University | Turkey

Assist. Prof. Dr. Fahanwi Asabuwa Ngwabebhoh is a materials and polymer scientist recognized for advancing functional biomaterials, nanocomposites, and environmentally responsive polymers through research that integrates synthesis, structural modification, and performance optimization. His scientific work centers on bioinspired hydrogels, nanocellulose-derived systems, electroactive polymer composites, and sustainable biopolymer materials designed for applications in adsorption, drug delivery, wound healing, environmental remediation, energy storage, and biosensing. With 1,385 citations, 48 published documents, and a Scopus h-index of 19, he is widely acknowledged for producing high-impact research that bridges fundamental materials chemistry with practical technological solutions. His investigations have yielded important contributions to controlled drug delivery systems, injectable and self-crosslinking hydrogels, microbial cellulose biocomposites, conductive polymer–based electrodes for supercapacitors, photodegradation materials, and agro-waste-derived sustainable composites. He has also developed optimized nanostructured adsorbents and membrane systems for emerging pollutant removal, applying advanced modeling tools such as response surface methodology and kinetic–isotherm analysis to enhance material efficiency and predict functional behavior. His research on nitrogen-doped cellulose gels, enzymatically crosslinked hydrogels, and biodegradable nanofibrous scaffolds has been influential in both environmental and biomedical materials science. Dr. Ngwabebhoh’s work demonstrates strong interdisciplinary depth, combining polymer chemistry, nanotechnology, materials characterization, and applied engineering principles to generate innovation-driven scientific output. His publication profile and research achievements reflect impactful contributions that support sustainable technologies, advanced biomaterials, and green material design, establishing him as a leading researcher suited for recognition through the Research Excellence Award.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Ngwabebhoh, F. A., Gazi, M., & Oladipo, A. A. (2016). Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chemical Engineering Research and Design. Citation: 173

Ngwabebhoh, F. A., Erdagi, S. I., & Yildiz, U. (2018). Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydrate Polymers. Citation: 165

Erdagi, S. I., Ngwabebhoh, F. A., & Yildiz, U. (2020). Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. International Journal of Biological Macromolecules. Citation: 142

Nguyen, T. H., Fei, H., Sapurina, I., Ngwabebhoh, F. A., Bubulinca, C., Munster, L., & others. (2021). Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochimica Acta. Citation: 131

Ngwabebhoh, F. A., Zandraa, O., Patwa, R., Saha, N., Capáková, Z., & Saha, P. (2021). Self-crosslinked chitosan/dialdehyde xanthan gum blended hypromellose hydrogel for the controlled delivery of ampicillin, minocycline and rifampicin. International Journal of Biological Macromolecules. Citation: 103

Harun Mindivan | Titanium Alloy | Best Researcher Award

Prof. Dr. Harun Mindivan | Titanium Alloy | Best Researcher Award

Professor at Bilecik Seyh Edebali University | Turkey

This researcher has established a distinguished scientific profile in materials science and mechanical engineering, with a strong emphasis on tribology, surface modification, and advanced coating technologies. With 612 citations, 52 Scopus-indexed documents, and an h-index of 13, their research impact is well recognized within the global scientific community. Their work centers on developing high-performance materials and engineered surfaces capable of withstanding extreme mechanical, thermal, and corrosive environments. They have contributed extensively to the development of plasma-nitrided steels, electroless and electrochemical borided alloys, graphene-enhanced composite coatings, high-velocity oxy-fuel (HVOF) sprayed stainless steel coatings, and oxide-reinforced thin films. Through comprehensive analyses of microstructure–property relationships, the researcher advances understanding of wear mechanisms, tribocorrosion behavior, hardness enhancement, and coating adhesion in metallic systems. Their investigations on metal–matrix composites-such as carbon-nanotube-reinforced aluminum and magnesium-offer significant innovations in lightweight structural materials. Additional contributions include studies on surface optimization of titanium alloys, corrosion-resistant coatings, and improvements in machinability and mechanical integrity of industrial steels. Their research outputs are consistently published in reputable scientific journals indexed in Scopus and other major databases, demonstrating steady productivity and high citation engagement. By integrating experimental surface engineering methods with performance evaluation techniques, the researcher provides actionable scientific advancements that support the development of durable engineering materials. This strong publication record and sustained contribution across multiple material systems highlight the researcher’s ongoing significance and excellence in the field.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Mindivan, H., Kayali, E. S., & Cimenoglu, H. (2008). Tribological behavior of squeeze cast aluminum matrix composites. Wear, 265(5–6), 645–654.

Mindivan, H., Efe, A., Kosatepe, A. H., & Kayali, E. S. (2014). Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Applied Surface Science, 318, 234–243.

Mindivan, H., Çimenoğlu, H., & Kayali, E. S. (2003). Microstructures and wear properties of brass synchroniser rings. Wear, 254(5–6), 532–537.

Mindivan, H., Baydogan, M., Kayali, E. S., & Cimenoglu, H. (2005). Wear behaviour of 7039 aluminum alloy. Materials Characterization, 54(3), 263–269.

Mindivan, H. (2010). Reciprocal sliding wear behaviour of B₄C particulate reinforced aluminum alloy composites. Materials Letters, 64(3), 405–407.

Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Mr. Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Assistant Professor at Gumushane University | Turkey

Mr. Suleyman Sukuroglu is a materials and surface engineering researcher whose work centers on advanced coating technologies, particularly micro-arc oxidation (MAO) and plasma electrolytic oxidation (PEO), applied to lightweight structural alloys such as magnesium, aluminum, titanium, and NiTi. With 149 citations, 12 Scopus-indexed publications, and an h-index of 7, he has contributed substantially to understanding and improving the mechanical, corrosion, wear, adhesion, tribocorrosion, and biocompatibility properties of ceramic and nanocomposite coatings. His studies involve the incorporation of functional nanoparticles-including TiB₂, ZnO, h-BN, graphene oxide, Ag, MoS₂, and sodium pentaborate-into oxide layers to enhance structural stability and multifunctional performance. He has published high-quality research demonstrating improvements in coating morphology, oxide layer integrity, and interfacial adhesion, contributing to the advancement of durable and corrosion-resistant surfaces for both industrial and biomedical applications. His work on NiTi shape-memory alloys and WE43 magnesium alloys has expanded knowledge on biocompatible coatings, corrosion control, and surface modification strategies for engineering systems. His research output appears in respected international journals such as Materials Today Communications, Journal of Adhesion Science and Technology, Applied Physics A, Arabian Journal for Science and Engineering, and multiple materials science conference proceedings. He has also contributed to national research projects involving tribological optimization, nanoparticle-reinforced oxide layers, and coating performance evaluation under challenging environments. Through sustained scientific output, a clear thematic research focus, and contributions to materials characterization and surface technologies, he has established a recognized academic profile within the fields of metallurgical engineering and surface modification science.

Profiles : Scopus | ORCID

Featured Publications

Belet, A. K., Şüküroğlu, S., & Şüküroğlu, E. E. (2025). Investigation of structural and adhesion properties of ZnO and h-BN doped TiO₂ coatings on Cp–Ti alloy. Journal of Adhesion Science and Technology.

Şüküroğlu, S. (2025). Characterization, corrosion, adhesion and wear properties of Al₂O₃ and Al₂O₃:TiB₂ composite coating on Al 7075 aluminum alloy by one-step micro-arc oxidation method. Materials Today Communications.

Şüküroğlu, S., Şüküroğlu, E. E., Totik, Y., Gülten, G., Efeoğlu, İ., & Avcı, S. (2024). Corrosion and adhesion properties of MAO-coated LA91 magnesium alloy. Materials Science and Technology.

Şüküroğlu, S., Totik, Y., Şüküroğlu, E. E., & Avcı, S. (2024). Investigation of corrosion properties of LA-91 alloy coated with MAO method. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C.

Şüküroğlu, S. (2023). Al 2024 alaşımı üzerine mikro ark oksidasyon yöntemiyle B4C ilaveli kompozit kaplamaların büyütülmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi.

Yanhong Wang | Wear Resistant Coating | Best Researcher Award

Ms. Yanhong Wang | Wear Resistant Coating | Best Researcher Award

University of Science and Technology Beijing | China

Yanhong Wang is a metallurgical engineering researcher specializing in wear-resistant coatings for steel substrates, with a focus on advancing long-life materials that support low-carbon industrial transformation. Her work emphasizes the design, preparation, and performance optimization of coatings that enhance abrasion resistance under severe service conditions. Through her Scopus-indexed publication, “A Review of Wear-Resistant Coatings for Steel Substrates: Applications and Challenges” in Metals (2025), she provides a comprehensive assessment of coating technologies including thermal spray processes, laser cladding, chemical and physical vapor deposition, and emerging hybrid approaches. ORCID currently indexes 1 research document and an h-index of 1, reflecting her growing scholarly influence. Her research highlights the interplay between coating microstructure, bonding mechanisms, mechanical performance, and environmental durability, identifying key factors that determine coating reliability in high-wear environments. By analyzing failure modes, synergistic strengthening strategies, and the compatibility of coating materials with steel substrates, she contributes essential insights for designing next-generation protective layers. Her work also evaluates industrial applicability, cost-effectiveness, and the sustainability benefits of durable surface engineering solutions, positioning her research within the broader goals of carbon neutrality and reduced resource consumption. Through systematic knowledge integration, she provides valuable guidance for future research directions and industrial innovation in metallurgical coatings.

Profile : ORCID

Featured Publication

Wang, Y., Feng, C., Lin, T., Zhu, R., Zhang, J., Yang, H., Yi, S., He, J., Tu, M., & Wei, G. (2025). A review of wear-resistant coatings for steel substrates: Applications and challenges. Metals.

 

 

Rand Kadhum | Applications in Dentistry | Best Researcher Award

Dr. Rand Kadhum | Applications in Dentistry | Best Researcher Award 

University of Baghdad | Iraq

Dr. Rand Naseer Khadum Al-Tamimi is an accomplished Iraqi dental specialist and academic in prosthodontics, serving at the Ministry of Health in Baghdad while pursuing advanced academic research at the University of Baghdad. She holds a Bachelor’s degree in Dentistry and a Master’s in Prosthodontics from the University of Baghdad. Her expertise spans restorative and prosthetic dentistry, focusing on the design and development of dental prostheses that improve oral function, comfort, and aesthetics. She has contributed to several academic and clinical studies addressing dental materials, biomechanical analysis of prosthodontic structures, and evidence-based rehabilitation methods. Dr. Al-Tamimi’s academic output includes multiple peer-reviewed publications indexed in Scopus, contributing significantly to prosthodontic science. Her scholarly pursuits align with current innovations in dental technology and materials science, aiming to enhance treatment efficiency and patient outcomes. With a combination of clinical experience, academic excellence, and research innovation, Dr. Al-Tamimi has established herself as a promising contributor to dental science in Iraq and the broader Middle Eastern region. Her work exemplifies dedication, scientific curiosity, and leadership within the prosthodontic research community.

Profile : ORCID

Featured Publications

Kadhum, R. N., & Hamad, T. I. (2025). Barium titanate synthesis, mechanism of action and its applications in dentistry: A literature review. Journal of Applied Biomaterials & Functional Materials.

Kadhum, R. N., & Hamad, T. I. (2025). Evaluating the effects of barium titanate nanoparticles on the mechanical properties of 3D-printed acrylic denture base. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.

Antoni Mir Pons | Smart Materials | Young Scientist Award

Mr. Antoni Mir Pons | Smart Materials | Young Scientist Award

University of the Balearic Islands | Spain

Mr. Antoni Mir Pons is a Spanish civil engineer specializing in construction engineering and structural reinforcement, currently serving as a researcher at the University of the Balearic Islands (UIB). He holds a Bachelor’s degree in Industrial Technologies Engineering and Business Administration and Management from the University of Girona. He also earned a Master’s in Industrial Engineering from UIB, where he received the Best Master’s Thesis award. His doctoral research focuses on the effects of semi-cyclic loading on structural reinforcement using iron-based shape-memory alloys (Fe-SMA). Pons has contributed to several international conferences, including SMAR 2024 in Salerno and the 15th fib International PhD Symposium in Budapest, presenting studies on Fe-SMA reinforced concrete structures. His research interests encompass concrete structures and blasting, with a particular emphasis on the application of Fe-SMA for strengthening existing structures. He has been involved in various R&D projects, such as RESTART and CICLO-ESTRUCTURA, focusing on the resilience of concrete infrastructure and the structural effects of cyclic overloads on Fe-SMA reinforced concrete beams. Pons has published articles in peer-reviewed journals, including “Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures” and “Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars,” both co-authored with Sandra del Río Bonnín, Carlos Ribas, and Antoni Cladera. His Scopus profile indicates 4 documents, 2 citations and an h-index of 1. Additionally, he has teaching experience in laboratory practices for the Structures I course in the Technical Architecture program at UIB. Pons is also active on ResearchGate, where he shares his publications and collaborates with fellow researchers.

Profile: Scopus 

Feautured Publilcations

Mir Pons, A., Del-Río-Bonnín, S., Ruiz-Pinilla, J. G., & Cladera, A. (2025). Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. Journal of Structural Engineering, 151(9), 04023109.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures. Materials and Structures, 57(6), 1–16.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars. Materials Science and Engineering: A, 859, 144151.

Mir Pons, A., Kustov, B., Ruiz Pinilla, J. G., & Cladera, A. (2024). Characterization of 11-mm Fe-SMA bars used as prestressing reinforcement in concrete structures. Proceedings of the 13th International Conference on Smart Materials and Nanotechnology in Engineering (SMN 2024), 1–8.

Mir Pons, A., Del Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on reinforced concrete beams strengthened with iron-based shape-memory alloy bars. Proceedings of the 15th fib International PhD Symposium in Civil Engineering, 1–8.

Qi Shi | Refractory Metals | Best Researcher Award

Qi Shi | Refractory metals | Best Researcher Award

Senior Engineer at Ningbo University of Technology | China

Assoc. Prof. Dr. Qi Shi is a distinguished researcher in materials science with a Ph.D. in Materials Science and Technology from Loughborough University, UK. Since returning to China, he has focused on the R&D of near-net-shape technologies, including advanced metal powders, powder metallurgy, and additive manufacturing. His pioneering work in radio-frequency (RF) plasma spheroidization of refractory metals has achieved breakthroughs in stable feeding technology for ultrafine powders, enabling consistent feeding and effective dispersion of low-density powders. He has also developed ultrasonic-fluidized bed wet classification methods for efficient micro-nano powder separation, leading to the production and commercialization of low-oxygen tantalum powder, ultrafine tungsten powder, and ultra-high hardness cast tungsten carbide powder. His research extends to metal additive manufacturing and post-processing, where he has advanced powder suitability evaluation and clarified the role of powder characteristics in selective laser melting (SLM). Through hot isostatic pressing and high-pressure heat treatment, he has enhanced strength–toughness synergy and significantly improved high-cycle fatigue performance in stainless steel, tantalum, and tungsten. Qi Shi has led five major government-funded projects, securing over RMB three million, and contributed to more than ten additional national and regional initiatives. He has published 35 academic papers in prestigious journals such as Additive Manufacturing, Materials Science and Engineering: A, and Journal of Materials Research and Technology, including 15 as first or corresponding author. According to his Scopus profile, he has more than 356 citations and an h-index of 13. He has also applied for 21 patents (15 granted), contributed to national standards, authored professional books, and received multiple awards, including the China Nonferrous Metals Industry Science and Technology Award (Second Prize) and the National Technical Standard Excellence Award (First Prize).

Profile: Scopus

Featured Publications

Shi, Q., Li, D., Du, W., Wu, A., & others. (2024). Improved mechanical properties and thermal conductivity of laser powder bed fused tungsten by using hot isostatic pressing. Cited by: 2

Pu, Y., Zhao, D., Liu, B., Shi, Q., & others. (2024). Microstructure evolution and mechanical properties of Ti-25Ta alloy fabricated by selective laser melting and hot isostatic pressing. Cited by: 1

Xu, J., Chen, H., Shi, Q., Liu, X., & others. (2024). Interdiffusion mechanism of hybrid interfacial layers for enhanced electrical resistivity and ultralow loss in Fe-based nanocrystalline soft magnetic composites. Cited by: 3

Qin, F., Shi, Q., Zhou, G., Wen, J., & others. (2024). Simultaneously enhanced strength and plasticity of laser powder bed fused tantalum by hot isostatic pressing. Cited by: 2

Qin, F., Shi, Q., Zhou, G., Yao, D., & others. (2023). Influence of powder particle size distribution on microstructure and mechanical properties of 17-4 PH stainless steel fabricated by selective laser melting. Cited by: 14

Khadijeh Esmati | Binder Jetting | Best Researcher Award

Mrs. Khadijeh Esmati | Binder Jetting | Best Researcher Award

Polytechnique Montréal | Canada

Khadijeh Esmati is an accomplished researcher and engineer specializing in stainless steel additive manufacturing, powder metallurgy, welding, and metallurgical process optimization. Currently pursuing her Ph.D. at Polytechnique Montreal, she focuses on the sintering behavior and mechanical properties of stainless steels fabricated by powder bed binder jetting. Her professional journey spans diverse research and engineering roles in Canada and Iran, including significant contributions to Polytechnique Montreal, Amirkabir University of Technology, MANGAN Manufacturing, and TurboTEC. She has developed expertise in heat treatment, mechanical testing, metallography, failure analysis, and nondestructive testing, contributing to industrial and academic advancements. Khadijeh has authored and co-authored peer-reviewed publications in leading journals such as Journal of Materials Research and Technology, Materials Today Communications, and Materials & Design. Her career reflects a strong integration of experimental research, industrial design, and technical leadership, positioning her as a rising figure in materials science and engineering.

Professional Profile

Scopus | Google Scholar

Education

Khadijeh Esmati’s academic background demonstrates a strong foundation in materials engineering and advanced manufacturing. She earned her Bachelor of Science degree in Materials Science and Engineering from Sahand University of Technology, where she studied corrosion and materials behavior in petrochemical applications. She went on to pursue a Master of Science degree in Materials Engineering at Amirkabir University of Technology, Tehran, focusing on welding and brazing of copper-beryllium alloys, where she gained extensive experience in microstructural analysis and mechanical evaluation of diffusion-brazed joints. Currently, she is a Ph.D. student in Mechanical Engineering at Polytechnique Montreal under the supervision of Dr. Étienne Martin. Her doctoral research focuses on additive manufacturing by binder jetting, with a specialization in sintering optimization, anisotropy shrinkage studies, and mechanical property evaluation of stainless steel alloys. Her educational journey has given her a comprehensive understanding of materials characterization, advanced processing, and sustainable metallurgical techniques.

Experience

With extensive research and industrial experience, Khadijeh Esmati has contributed to multiple facets of metallurgical engineering. At Polytechnique Montreal, she has served as a research engineer and doctoral researcher, investigating sintering processes of AlSi10Mg alloys and stainless steels in additive manufacturing. Prior to this, she worked at Amirkabir University of Technology on projects ranging from dual-phase steels and welded structures to turbine blade coatings and corrosion studies. Her industry experience includes her role as Principal Design Engineer at MANGAN Manufacturing, where she oversaw material selection for impellers, steel casting processes, and preparation of welding procedures. At TurboTEC, she contributed to evaluating and improving repair welding for gas turbine components, further expanding her expertise in high-temperature alloys and failure analysis. Across her career, Khadijeh has combined hands-on experimental research with engineering practice, demonstrating her ability to bridge academic innovation with practical industrial applications in metallurgy and materials science.

Awards and Honors

Khadijeh Esmati has been recognized for her academic excellence and contributions to research in welding, powder metallurgy, and additive manufacturing. Her scholarly work has been published in high-quality journals, including Journal of Materials Research and Technology, Materials Today Communications, and Materials & Design. Her early career research on diffusion brazing of copper-beryllium alloys was well received, leading to conference presentations such as the 5th International Conference on Brazing in Nevada. She has also received professional certifications in ultrasonic testing, welding procedure specification, and procedure qualification record preparation, which highlight her technical credibility in both academic and industrial settings. In her doctoral research at Polytechnique Montreal, she has been commended for advancing binder jetting technologies, with her publications reflecting international recognition in additive manufacturing. These achievements, combined with her technical certifications, have positioned her as a rising professional bridging applied research, advanced characterization, and metallurgical engineering innovation.

Research Focus

Khadijeh Esmati’s research focuses on advanced materials processing and characterization, with a particular emphasis on additive manufacturing, binder jetting, and powder metallurgy. Her doctoral work investigates the sintering behavior, anisotropic shrinkage, and mechanical performance of stainless steels fabricated by binder jetting, using advanced characterization tools such as SEM, TEM, EBSD, and dilatometry. She is also engaged in optimizing heat treatment parameters for binder jetted alloys, particularly 17-4 PH stainless steel, to enhance strength, density, and microstructural integrity. Beyond additive manufacturing, her research interests extend to welding metallurgy, diffusion brazing, mechanical testing, and corrosion studies. She has contributed to understanding material failure mechanisms in welded structures, turbine blades, and coatings, providing valuable insights for industrial applications. Her overall research philosophy integrates innovation in material synthesis and processing with detailed structural and mechanical evaluation, aiming to advance sustainable manufacturing practices in metallurgy and mechanical engineering.

Publication top Notes

Study on the microstructure and mechanical properties of diffusion brazing joint of C17200 Copper Beryllium alloy
Year: 2014
Citations: 28

Evaluation of different sintering agents for binder jetting of aluminum alloy
Year: 2023
Citations: 18

Mitigating inherent micro-cracking in laser additively manufactured RENÉ 108 thin-wall components
Year: 2023
Citations: 16

Anisotropic sintering behavior of stainless steel 316L printed by binder jetting additive manufacturing
Year: 2024
Citations: 6

Influence of Temperature and Print Orientation on Anisotropic Sintering in Binder Jet SS316L
Year: 2024
Citations: 2

Conclusion

Khadijeh Esmati is a strong candidate for the Best Researcher Award due to her deep expertise in additive manufacturing, welding, and advanced materials characterization, along with her demonstrated ability to integrate academic research with industrial applications. Her diverse professional experience across both academia and industry highlights her as a resourceful and impactful researcher. With additional focus on sustainability, collaboration, and leadership, she has the potential to emerge as a leading figure in materials engineering. Based on her achievements, she is well-suited for recognition under this award.

Huajie Luo | Thermal Crystal | Best Researcher Award

Assoc. Prof. Dr. Huajie Luo | Thermal Crystal | Best Researcher Award

Associate Professor at University of Science and Technology Beijing | China

Assoc. Prof. Dr. Huajie Luo is an accomplished researcher and associate professor at the University of Science and Technology Beijing, specializing in the design, structure, and performance regulation of ferroelectric ceramics and thin films. With over 60 published papers in high-impact journals, including Nature Communications, Science Advances, JACS, and Angewandte Chemie, he has made significant contributions to energy storage materials and piezoelectric technologies. His expertise spans from macroscopic electrostrain and energy density to atomic-level structural evolution using advanced synchrotron XRD, neutron diffraction, and total scattering techniques. Over the years, Dr. Luo has developed a strong profile in multi-scale crystal structure analysis and has been instrumental in unveiling mechanisms that enhance piezoelectric and energy storage performance in lead-free ceramics. With multiple national invention patents and recognition for his innovative contributions, Dr. Luo stands at the forefront of advancing sustainable and high-performance functional materials for energy applications.

Professional Profile

ORCID | Scopus

Education

Assoc. Prof. Dr. Huajie Luo pursued his higher education at the University of Science and Technology Beijing (USTB), where he embarked on a rigorous academic journey in materials science. He earned both his master’s and doctoral degrees in Physical Chemistry, with research focusing on the fundamental mechanisms and performance optimization of ferroelectric ceramics. His doctoral training emphasized advanced characterization techniques, including synchrotron XRD, neutron diffraction, and inverse Monte Carlo analysis, which allowed him to link structural evolution with macroscopic material properties. Following this, he undertook a prestigious postdoctoral fellowship at USTB’s Department of Physical Chemistry  where he deepened his research on high-performance electroceramics and functional thin films. His strong educational background not only provided him with profound theoretical knowledge but also with highly practical experimental skills, positioning him as a promising scholar and innovator in crystallography, energy storage materials, and piezoelectric systems.

Experience

Assoc. Prof. Dr. Huajie Luo’s professional career reflects a steady progression through advanced academic and research roles at the University of Science and Technology Beijing (USTB). After completing his doctoral studies, he became a postdoctoral researcher at USTB’s Department of Physical Chemistry, where he contributed to national-level projects focused on ferroelectric ceramics, synchrotron radiation analysis, and electrochemical energy storage. He was appointed associate professor at the School of Materials Science and Engineering, USTB. His role includes leading independent research projects, mentoring graduate students, and collaborating internationally on energy storage and structural design studies. Dr. Luo has also participated in major research programs such as China’s Key Research and Development initiatives, serving as both project leader and key contributor. His broad professional experience integrates materials chemistry, structural crystallography, and electroceramic design, providing both academic and industrial sectors with impactful solutions for energy storage, environmental sustainability, and next-generation materials innovation.

Awards and Honors

Throughout his career, Assoc. Prof. Dr. Huajie Luo has received multiple recognitions for his outstanding contributions to materials science and engineering. He was selected for China’s prestigious 7th Postdoctoral Innovative Talent Program, an initiative by the Ministry of Human Resources and Social Security to support promising young scientists. He was named Outstanding Postdoctoral Researcher at the University of Science and Technology Beijing, reflecting his exceptional contributions during his fellowship. He also earned the Wiley China High Contribution Author Award acknowledging the global impact of his research publications. Additionally, Dr. Luo was invited to join the Youth Editorial Board of Microstructures, highlighting his reputation as a rising leader in crystallography and electroceramics. His academic achievements are complemented by recognition in international conferences, where his oral and poster presentations have received attention in Japan, China, and global forums, solidifying his status as an innovative and influential researcher.

Research Focus

Assoc. Prof. Dr. Huajie Luo’s research centers on the design, structural analysis, and performance optimization of ferroelectric ceramics and thin films. His work emphasizes regulating macroscopic properties such as electrostrain and energy storage by tailoring multi-scale crystal structures. Using advanced techniques like synchrotron X-ray diffraction, neutron scattering, and total scattering analysis, he investigates the evolution of both short- and long-range structures to reveal the mechanisms behind high piezoelectricity and capacitive energy storage. Dr. Luo has made significant breakthroughs in achieving giant electrostrain in lead-free piezoelectrics and developing high-efficiency energy storage ceramics, with results published in top-tier journals including Science Advances, JACS, and Angewandte Chemie. His research not only provides new scientific insights but also proposes practical solutions for sustainable energy storage materials. By bridging fundamental crystallography with applied materials design, Dr. Luo aims to contribute to cleaner, greener energy systems while pushing the boundaries of functional materials innovation.

Publication top Notes

Conclusion

Assoc. Prof. Dr. Huajie Luo is highly suitable for the Best Researcher Award, given his impressive publication record, patents, and contributions to the understanding and development of lead-free ferroelectric ceramics with high electrostrain and energy storage properties. His research shows both academic depth and industrial applicability, making him a strong candidate. With expanded international collaborations and broader societal engagement, his impact could become even more profound.