Jingshi Zhang | Kinetics in Steelmaking | Best Researcher Award

Dr. Jingshi Zhang | Kinetics in Steelmaking | Best Researcher Award

Lecturer at Changchun University of Technology | China

Dr. Jingshi Zhang is a dedicated metallurgical researcher and lecturer at Changchun University of Technology, recognized for his innovative work in steelmaking reaction kinetics and metal matrix composites. Trained under Prof. Miaoyong Zhu at Northeastern University, he has developed a strong foundation in computational modeling, materials behavior, and laser additive manufacturing. His publication record includes 12 papers, among which several are in high-impact journals such as Metallurgical and Materials Transactions B and Journal of Alloys and Compounds. His Scopus profile lists 6 documents, 1 citation, and an h-index of 1, illustrating his growing academic influence. Dr. Zhang has made significant advances in developing nano-TiB₂/AlSi10Mg composites using selective laser melting and constructing a metallurgical transport and reaction model to optimize dephosphorization processes in converters. His work contributes to improved understanding of microstructural strengthening mechanisms and process efficiency in metallurgical systems. With four patents filed, he demonstrates a strong focus on applied research and innovation. His collaborations, notably with Hong Kong City University, underscore his international engagement and commitment to advancing metallurgical process technology. Dr. Zhang’s scientific contributions and interdisciplinary research approach make him a strong candidate for the Best Researcher Award.

Profile : Scopus | ORCID

Featured Publications

Dai, J., Zhang, J., Fu, L., Zou, H., Zhu, W., Han, Y., & Ran, X. (2025). Control of microstructure and mechanical properties of nano-TiB₂ modified AlSi10Mg alloy by selective laser melting. Journal of Alloys and Compounds.

Wang, Z., Fu, L., Yang, Y., Zhang, J., Han, Y., & Ran, X. (2025). Selective Laser Melting of a Fe–Cr–Ni–Al–Mo Precipitation Hardening Stainless Steel: Process Parameter Optimization and Control of Microstructure and Properties. Steel Research International.

Zhang, J., Lou, W., & Zhu, M. (2023). Numerical Simulation of Particle Motion and Wall Scouring Behavior in Steelmaking Converter With Bottom Powder Injection. Metallurgical and Materials Transactions B, 54(12).

Zhang, J., Lou, W., & Zhu, M. (2023). Numerical Simulation of Particle Transport Phenomenon in Steelmaking Converter With Bottom Powder Injection Based on Eulerian-Multifluid VOF-Granular Flow Model. Metallurgical and Materials Transactions B, 54(6).

Zhang, J., Lou, W., Shao, P., & Zhu, M. (2022). Mathematical Simulation of Impact Cavity and Gas–Liquid Two-Phase Flow in Top–Bottom Blown Converter with Eulerian-Multifluid VOF Model. Metallurgical and Materials Transactions B, 53(12).

Shujing Wu | Alloy Development | Best Researcher Award

Dr. Shujing Wu | Alloy Development | Best Researcher Award

Associate Professor at North China University of Science and Technology | China

Dr. Shujing Wu, Ph.D. in Materials Science from Wuhan University, is an Associate Professor at North China University of Science and Technology, where she leads research in magnesium alloys and low-carbon steel welding. Her work emphasizes in-situ characterization of microdefects, precipitation kinetics, and their influence on the regulation of mechanical properties, as well as inclusion control and toughening mechanisms in steels. She has made significant contributions to understanding microstructural evolution through advanced in-situ methodologies, providing valuable insights into strengthening mechanisms and orientation relationships in alloys. Dr. Wu has published 13 journal articles indexed in Scopus, with more than 91 citations and an h-index of 4, underscoring the impact and recognition of her research in the field of materials science. As first or corresponding author, she has produced over 10 SCI papers and has been honored with two second prizes for outstanding academic papers in Hubei Province and Tangshan City. She has successfully secured two Hebei Provincial Natural Science Foundation grants and one Postdoctoral Foundation grant, and she has also contributed as a major participant to a National Natural Science Foundation of China regional key project focusing on welded low-carbon steel. Her innovative studies offer new strategies for performance optimization in structural alloys and have practical relevance for industrial metallurgy. Recognized for her academic leadership and dedication to advancing the understanding of microdefect interactions and precipitation behaviors, Dr. Wu stands as a promising figure in materials innovation with a growing global research influence.

Profile: Scopus 

Feautured Publications

Wu, S., Li, Y., Zhang, H., & Chen, X. (2025). In situ observation of the dynamic precipitation of Mg₂Sn in Mg-Sn binary alloy processed by controlled aging treatment. Materials & Design. DOI: 10.1016/j.matdes.2025.113021.

Wu, S., Zhao, L., Wang, J., & Liu, Q. (2023). In situ observation and mechanism study on the oxidation process of magnesium under trace oxygen condition. Rengong Jingti Xuebao (Journal of Synthetic Crystals)

 

Liyuan Liu | Alloy Development | Best Researcher Award

Liyuan Liu | Alloy Development | Best Researcher Award

Professor at Kunming University of Science and Technology |  China

Liyuan Liu is a Professor of Metallurgical Engineering at Kunming University of Science and Technology, China, with a Doctor of Engineering degree from Harbin Engineering University. As a high-level talent introduction scholar, he has established himself as a leading researcher in high-entropy alloys (HEAs), focusing on synergistic enhancement of strength–ductility, radiation resistance, and high-strength/high-conductivity copper alloys. Over his career, he has published 48 peer-reviewed papers in top international journals including Advanced Science, Acta Materialia, International Journal of Plasticity, Journal of Materials Science & Technology, and Scripta Materialia. His impactful research has garnered more than 877 citations with an H-index of 12, reflecting both the quality and influence of his work in the field. He has led or participated in over ten major research projects funded by the National Natural Science Foundation of China, the National Key R&D Program, and the Ministry of Industry and Information Technology, contributing to both theoretical advances and engineering applications. His innovations include the development of nanoprecipitate-strengthened HEAs, elucidation of stacking fault and twinning deformation mechanisms, and breakthroughs in flash-heating-driven chemical supersaturation to achieve high-density nanoprecipitates. Beyond research, he holds several patents in high-entropy alloy and stainless-steel systems, underscoring his contributions to applied materials science. Professor Liu is also active in professional societies, serving as a member of the Chinese Society for Materials Research, the Chinese Nuclear Society (Radiation Effects Branch), and the China Nonferrous Metals Association. His work continues to shape the advancement of next-generation structural and functional alloys for nuclear, aerospace, and energy applications

Pofile: Scopus

Featured Publication

Li, G., Liu, L., Gao, P., Teng, Z., Lu, Q., Xu, Z., Fu, L., & Yi, J. (2025). Enhancing the mechanical properties of multi-principal element alloys via constructing dual-heterostructures through the immiscibility between elements. Materials Science and Engineering A.

Luo, R., Liu, L., Teng, Z., Yi, J., & Li, C. (2025). Achieving strength-ductility synergy in a multi-principal element alloy via constructing multi-scale heterostructures controlled by spinodal decomposition. Journal of Alloys and Compounds.

Peng, Y., Xu, Z., Fu, L., Liu, L., Gao, P., Lu, Q., Tao, J., Bao, R., Yi, J., & Li, C. (2025). Achieving strength–ductility synergy in aluminum matrix composites through promoting the intragranular distribution of nanoparticles. Advanced Composites and Hybrid Materials.

Liu, L., Zhang, Y., Li, J., Fan, M., Wang, X., Wu, G., Yang, Z., Luan, J., Jiao, Z., Liu, C. T., Liaw, P. K., & Zhang, Z. (2022). Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 153, 103235.

Liu, L., Zhang, Y., Zhang, Z., Li, J., Jiang, W., & Sun, L. (2024). Nanoprecipitate and stacking fault-induced high strength and ductility in a multi-scale heterostructured high entropy alloy. International Journal of Plasticity, 172, 103853.

Guangsheng Song | Materials science | Best Researcher Award

Prof. Dr. Guangsheng Song | Materials science | Best Researcher Award

Academic leader at Anhui University of Technology, Australia.

Dr. Guangsheng Song, a renowned professor and science leader, specializes in materials science and engineering. Based at Anhui University of Technology, China, he has over two decades of expertise in developing advanced materials for sustainable applications. His research spans hydrogen separation membranes, light metal materials, and nanomaterials for energy storage. With a global academic footprint, Dr. Song has held significant roles across prestigious institutions in China, South Korea, New Zealand, Canada, and Australia. His innovative contributions have earned international recognition, driving breakthroughs in materials science.

Professional Profiles📖

Scopus

Education 🎓

Dr. Song’s academic journey reflects his commitment to advanced materials science. He completed his PhD in Materials Science and Engineering at Harbin Institute of Technology, China, in 1994, focusing on light metal materials and their applications. His postdoctoral studies at Canterbury University, New Zealand, from 2002 to 2004, allowed him to deepen his expertise in metallurgical and mechanical engineering. These academic pursuits laid the foundation for his subsequent pioneering research and professional achievements.

Professional Experience💼

Dr. Song’s career is marked by leadership roles across globally renowned institutions. Since 2017, he has served as a professor and science leader at Anhui University of Technology, advancing research in materials science. Previously, he was a senior scientist at CSIRO Manufacturing Flagship, Australia (2007–2016), contributing to innovative manufacturing technologies. His research experience includes roles as a research associate at McGill University, Canada (2004–2006), a postdoctoral fellow at Canterbury University, New Zealand (2002–2004), and a senior researcher at Yonsei University, South Korea (1999–2002). Earlier in his career, he was an associate professor at Northwestern Polytechnical University, China (1995–1999).

Research Focus 🔍

Dr. Song’s research addresses critical challenges in materials science. His work on hydrogen separation alloy membranes aims to develop efficient solutions for clean energy applications. He explores the design and application of light metal materials, focusing on their use in the aerospace and automotive industries. His studies on nanomaterials for energy storage and conversion devices seek to enhance renewable energy technologies. Additionally, he investigates the process-structure-property relationship and conducts engineering failure analysis to improve material performance and reliability.

Awards and Honors

Dr. Song’s contributions have been recognized with numerous accolades. He received the Outstanding Science Leader Award for his innovative research and the CSIRO Excellence in Manufacturing Research Award for his impact on advanced materials development. He has been acknowledged as a recognized reviewer for leading materials science journals and received the Excellence in International Collaboration Award for fostering global research partnerships. These honors underscore his influence in the field of materials science and engineering.

Conclusion ✅

Dr. Guangsheng Song is a compelling candidate for the Best Researcher Award. His expertise in hydrogen separation alloys and nanomaterials, combined with a remarkable international career and leadership role, positions him as a frontrunner in material science research. Addressing areas such as expanding publication reach and enhancing global collaborations could solidify his standing as a global leader in the field.

Publications to Noted📚

  1. First-principles study of hydrogen separation behavior in vanadium–aluminum alloys

  • Year: 2025

  1. Heterojunction design of ZnO/α-Fe2O3 with dual enhancement of ion/electron transport for energy storage

  • Citations: 1

  • Year: 2025

  1. Significant improvement of cold-rolling formability and hydrogen embrittlement resistance of Y-doped V alloy membranes for hydrogen separation

  • Year: 2025

  1. Research Progress in Alloying and Plastic Deformation of Ultralight Mg-Li Alloy

  • Year: 2025

  1. In-situ synthesis of Mn2SiO4 and MnxSi dual phases through solid-state reaction to improve the initial Coulombic efficiency of SiO anode for Lithium-Ion batteries

  • Year: 2025

  1. Effect of Asymmetric Rolling on the Microstructure, Texture, and Mechanical Properties of Mg–11Li–3Al–2Zn Alloy

  • Year: 2025

  1. Electrochemical exfoliated graphene-encapsulated SiO-TiO2 composites as anode materials for Li-ion batteries

  • Year: 2025

  1. Recent developments in coating investigation of LiNixMnyCo1-x-yO2 cathode material with promising (Li, Ni) rich layered for future generation lithium-ion batteries (Review)

  • Citations: 3

  • Year: 2025

  1. Preparation and electrochemical properties of Fe2O3 modified Si/SiO2 composites

  • Year: 2024

  1. Multi-Doping Exploration of (Sb, Bi and Ba) by First Principles on Ordered Zn-Si-P Compounds as High-Performance Anodes for Next-Generation Li-Ion Batteries (Open access)

  • Citations: 2

  • Year: 2024