Beya Ouertani | Fabrication and Characterization | Research Excellence Award

Assoc. Prof. Dr. Beya Ouertani | Fabrication and Characterization | Research Excellence Award

Associate Professor at University of Tunis El Manar | Tunisia

Assoc. Prof. Dr. Beya Ouertani is an accomplished researcher in condensed matter physics, specializing in the synthesis and characterization of semiconductor and porous thin films for energy and optoelectronic applications. Her work emphasizes low-cost spray pyrolysis routes for materials relevant to photovoltaics, sensors, and functional coatings, with demonstrated advances in structural, optical, and electrical performance. She has published 18 Scopus-indexed research articles, including high-quality papers in Ceramics International, Journal of Alloys and Compounds, and Materials Chemistry and Physics. Her scholarly output has received 335 citations, achieving a Scopus h-index of 10, reflecting sustained research impact and scientific excellence suitable for the Research Excellence Award.

Citation Metrics (Scopus)

400

300

100

50

0

Citations
335

Documents
18

h-index
10

Featured Publications

Dongxin Wang | Rare Metal Materials | Excellence in Research Award

Dr. Dongxin Wang | Rare Metal Materials | Excellence in Research Award

Director at State Key Laboratory of Special Rare Metal Materials | China

Dr. Dongxin Wang is a distinguished researcher recognized for impactful contributions to advanced materials and metallurgical research. His scholarly work emphasizes scientific rigor, innovation, and relevance to contemporary engineering challenges. He has published 41 peer-reviewed research documents, demonstrating sustained research productivity and academic leadership. His work has garnered 179 citations, reflecting strong visibility and influence within the international research community. With a Scopus h-index of 8, Dr. Wang’s research shows consistent citation performance across multiple publications. The quality, originality, and measurable impact of his research outputs clearly establish his suitability for the Excellence in Research Award, honoring significant and enduring contributions to research excellence.

Citation Metrics (Scopus)

200

100

50

25

0

Citations
179

Documents
41

h-index
8


View Scopus Profile

Featured Publications

Danielle Viviana Ochoa Arbeláez | Materials Science | Women Researcher Award

Dr. Danielle Viviana Ochoa Arbeláez | Materials Science | Women Researcher Award

Lecturer at National University of Colombia | Colombia

Dr. Danielle Viviana Ochoa Arbeláez’s research emphasizes the application of biophotonics and optical technologies to address complex challenges in biomedical science. Her work explores laser- and LED-based irradiation as non-invasive tools for studying cellular responses, contributing to advances in leukemia research, optical diagnostics, and experimental biomedical instrumentation. She combines chemical, pharmacological, and engineering principles to develop innovative experimental approaches with translational potential in health sciences. Her scholarly contributions include peer-reviewed publications, book chapters, and conference papers. As reflected in her Scopus profile, she has 10 documents, an h-index of 1, and 2 citations, underscoring her emerging impact as a woman researcher.

Citation Metrics ( Google Scholar )

20

15

10

0

Citations
2

Documents
10

h-index
1

Featured Publications

Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Dr. Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Researcher at Tomsk Polytechnic University | Russia

Dr. Abdelrahman Salman is a materials and nuclear engineering researcher whose work centers on developing advanced surface-treatment strategies for enhancing the corrosion resistance, stability, and functional performance of metallic alloys used in nuclear reactor systems. His research focuses on thin-film coating technologies, thermo-physical diagnostics, and nondestructive evaluation techniques that enable precise characterization of surface integrity under extreme operational conditions. He has engineered and tested thin-film layers that modify corrosion pathways in fast-reactor alloys, investigated adhesion behavior and microstructural evolution in protective coatings, and identified new corrosion-resistant phenomena in emerging materials. His development of a ThermoEMF-based diagnostic device has provided a novel method for real-time temperature monitoring of micro-scale surfaces, expanding analytical capabilities for thermal-mechanical behavior of coated materials. Through advanced methods such as SEM, XRD, XRF, ECT, sputtering deposition, and specialized NDT approaches, he analyzes degradation mechanisms critical to nuclear safety and component life-cycle management. His scholarly output includes 3 Scopus-indexed publications, 6 citations, and an h-index of 2, supported by active participation in over 15 technical conferences and multiple invited research presentations. His work continually integrates experimental innovation with reactor-relevant problem-solving, contributing valuable insights to thin-film engineering, corrosion mitigation, and materials diagnostics. Salman’s growing recognition in the field reflects his strong research capabilities and his commitment to developing robust surface-treatment technologies essential for next-generation nuclear energy systems.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Salman, A., Syrtanov, M., & Lider, A. (2025). High-temperature oxidation effect of protective thin layers Ta/Cr coatings on Zr-1Nb alloy for corrosion-resistant components of nuclear reactors. Materials Letters, 379, 137646.
Cited by: 4

Salman, A. M., Lider, A. M., & Lomygin, A. D. (2025). Surface treatment techniques and control methods for enhancing corrosion resistance and very thin films management in fast nuclear reactors. Results in Surfaces and Interfaces, 100468.
Cited by: 3

Salman, A. M., Kudiiarov, V. N., & Lider, A. M. (2025). Low resistivity measurement of chromium coatings on zirconium alloys E110 for the production of accident-resistant core components of nuclear reactors. Russian Physics Journal, 1–9.

Salman, A. M., Syrtanov, M. S., & Lider, A. M. (2024). Non-destructive testing of a Zr-1Nb zirconium alloy with a protective Cr/Mo thin layers coating for the production of corrosion-resistant components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

Salman, A. M., Kudiyarov, V. N., & Lider, A. M. (2024). Non-destructive techniques on zirconium alloy E110 with chromium coatings for the production of emergency-resistant core components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

 

Sabi William Konsago | Ferroelectric Materials | Excellence in Research Award

Dr. Sabi William Konsago | Ferroelectric Materials | Excellence in Research Award

Postdoctoral Researcher at Jožef Stefan Institute | Slovenia

Dr. Sabi William Konsago is an emerging researcher in electronic ceramics whose work focuses on the development, structural engineering, and functional optimization of lead-free ferroelectric and piezoelectric oxide materials, with a particular emphasis on Ba(Zr,Ti)O₃–(Ba,Ca)TiO₃ thin films prepared by chemical solution deposition. With 20 citations, 5 Scopus-indexed publications, and an h-index of 2, he has established a strong research footprint in the field through contributions that address fundamental and application-driven challenges in designing high-performance dielectric and electromechanical materials. His research advances understanding of how chemical formulation, solvent selection, and thermal-processing conditions influence microstructure, crystallographic orientation, domain behavior, and energy-storage efficiency in complex oxide thin films. He has developed novel ethylene-glycol-based precursor systems, optimized processing routes for improved film uniformity, and demonstrated pathways to enhance dielectric properties, breakdown strength, and electromechanical responses, leading to results published in internationally recognized journals such as Journal of Materials Chemistry A, Journal of Alloys and Compounds, ACS Applied Electronic Materials, Journal of Materials Chemistry C, and Molecules. His work is characterized by the integration of advanced characterization techniques, including XRD, SEM, AFM, SIMS, XPS, dielectric spectroscopy, and electromechanical testing, to correlate processing parameters with functional performance. Beyond thin films, his contributions also include investigations of bulk ceramics and structure–property relationships in high-entropy and multifunctional oxides. Through active participation in international conferences and collaborative projects, he has contributed to the broader advancement of sustainable, lead-free electronic materials and demonstrated potential for long-term scientific impact.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Konsago, S. W., Žiberna, K., Kmet, B., Benčan, A., Uršič, H., & Malič, B. (2022). Chemical solution deposition of barium titanate thin films with ethylene glycol as solvent for barium acetate. Molecules, 27(12), 3753. (Cited by: 18)

Konsago, S. W., Žiberna, K., Matavž, A., Mandal, B., Glinšek, S., Fleming, Y., Benčan, A., Brennecka, G. L., Uršič, H., & Malič, B. (2024). Engineering the microstructure and functional properties of 0.5Ba(Zr0.2Ti0.8)O₃–0.5(Ba0.7Ca0.3)TiO₃ thin films. ACS Applied Electronic Materials, 6(6), 4467–4477. (Cited by: 6)

Konsago, S. W., Debevec, A., Cilenšek, J., Kmet, B., & Malič, B. (2023). Linear thermal expansion of 0.5Ba(Zr0.2Ti0.8)O₃–0.5(Ba0.7Ca0.3)TiO₃ bulk ceramic. Informacije MIDEM, 53(4), 233–238. (Cited by: 3)

Konsago, S. W., Žiberna, K., Matavž, A., Mandal, B., Glinšek, S., Brennecka, G. L., Uršič, H., & Malič, B. (2025). High energy storage density and efficiency of 0.5Ba(Zr0.2Ti0.8)O₃–0.5(Ba0.7Ca0.3)TiO₃ thin films on platinized sapphire substrates. Journal of Materials Chemistry A, 13(4), 2911–2919. (Cited by: 1)

Konsago, S. W., Žiberna, K., Ekar, J., Kovač, J., & Malič, B. (2024). Designing the thermal processing of Ba(Ti0.8Zr0.2)O₃–(Ba0.7Ca0.3)TiO₃ thin films from an ethylene glycol-derived precursor. Journal of Materials Chemistry C, 12(36), 14658–14666.

Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Mr. Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Assistant Professor at Gumushane University | Turkey

Mr. Suleyman Sukuroglu is a materials and surface engineering researcher whose work centers on advanced coating technologies, particularly micro-arc oxidation (MAO) and plasma electrolytic oxidation (PEO), applied to lightweight structural alloys such as magnesium, aluminum, titanium, and NiTi. With 149 citations, 12 Scopus-indexed publications, and an h-index of 7, he has contributed substantially to understanding and improving the mechanical, corrosion, wear, adhesion, tribocorrosion, and biocompatibility properties of ceramic and nanocomposite coatings. His studies involve the incorporation of functional nanoparticles-including TiB₂, ZnO, h-BN, graphene oxide, Ag, MoS₂, and sodium pentaborate-into oxide layers to enhance structural stability and multifunctional performance. He has published high-quality research demonstrating improvements in coating morphology, oxide layer integrity, and interfacial adhesion, contributing to the advancement of durable and corrosion-resistant surfaces for both industrial and biomedical applications. His work on NiTi shape-memory alloys and WE43 magnesium alloys has expanded knowledge on biocompatible coatings, corrosion control, and surface modification strategies for engineering systems. His research output appears in respected international journals such as Materials Today Communications, Journal of Adhesion Science and Technology, Applied Physics A, Arabian Journal for Science and Engineering, and multiple materials science conference proceedings. He has also contributed to national research projects involving tribological optimization, nanoparticle-reinforced oxide layers, and coating performance evaluation under challenging environments. Through sustained scientific output, a clear thematic research focus, and contributions to materials characterization and surface technologies, he has established a recognized academic profile within the fields of metallurgical engineering and surface modification science.

Profiles : Scopus | ORCID

Featured Publications

Belet, A. K., Şüküroğlu, S., & Şüküroğlu, E. E. (2025). Investigation of structural and adhesion properties of ZnO and h-BN doped TiO₂ coatings on Cp–Ti alloy. Journal of Adhesion Science and Technology.

Şüküroğlu, S. (2025). Characterization, corrosion, adhesion and wear properties of Al₂O₃ and Al₂O₃:TiB₂ composite coating on Al 7075 aluminum alloy by one-step micro-arc oxidation method. Materials Today Communications.

Şüküroğlu, S., Şüküroğlu, E. E., Totik, Y., Gülten, G., Efeoğlu, İ., & Avcı, S. (2024). Corrosion and adhesion properties of MAO-coated LA91 magnesium alloy. Materials Science and Technology.

Şüküroğlu, S., Totik, Y., Şüküroğlu, E. E., & Avcı, S. (2024). Investigation of corrosion properties of LA-91 alloy coated with MAO method. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C.

Şüküroğlu, S. (2023). Al 2024 alaşımı üzerine mikro ark oksidasyon yöntemiyle B4C ilaveli kompozit kaplamaların büyütülmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi.

Qianzhe Zhang | Crystallographic Orientation | Best Researcher Award

Dr. Qianzhe Zhang | Crystallographic Orientation | Best Researcher Award

Postdoctoral Researcher at Zhejiang University of Technology| China

Dr. Qianzhe Zhang is a postdoctoral researcher at the Zhejiang University of Technology, where he explores advanced nanostructured materials for catalysis, sensing, and energy applications. His academic foundation, built on a Ph.D. in Materials Science from the Autonomous University of Barcelona, has shaped a research path that integrates crystal engineering, thin-film growth, and hybrid nanomaterial synthesis. With 3 Scopus-indexed papers, 232 citations, and an h-index of 3, Dr. Zhang’s contributions reflect both technical depth and applied relevance. His major studies include High-performance In₂O₃@PANI core–shell architectures with ultralong charge carrier lifetime for photocatalytic degradation of 1,2-dichlorobenzene (Applied Catalysis B: Environmental, 2020), Micro/Nanostructure Engineering of Epitaxial Piezoelectric α-Quartz Thin Films on Silicon (ACS Applied Materials & Interfaces, 2020), and Tailoring the crystal growth of quartz on silicon for patterning epitaxial piezoelectric films (Nanoscale Advances, 2019). Earlier, his research on α-Fe₂O₃/In₂O₃ composite hollow microspheres and bcc-In₂O₃ hollow structures advanced visible-light-driven photocatalysis and gas degradation mechanisms. His ongoing investigations emphasize the interface control and charge transfer dynamics within complex nanoarchitectures, aiming to enhance efficiency and environmental compatibility. Dr. Zhang’s steady record of citations, high-impact publications, and contributions to energy-efficient materials science mark him as an emerging leader in functional nanomaterials and a strong candidate for the Best Researcher Award.

Profiles : Scopus | ORCID

Featured Publications

Xu, L., Zhang, Q., Xu, Z., & Zhang, G. (2024). Metal–organic frameworks-based catalysts for methane production. Industrial & Engineering Chemistry Research. Citation: 2

Zhang, F., Li, X., Zhao, Q., Chen, G., & Zhang, Q. (2020). High-performance In₂O₃@PANI core–shell architectures with ultralong charge carriers lifetime for photocatalytic degradation of gaseous 1,2-dichlorobenzene. Applied Catalysis B: Environmental. Citation: 122

Zhang, Q., Sánchez-Fuentes, D., Desgarceaux, R., Escofet-Majoral, P., Oró-Soler, J., Gázquez, J., Larrieu, G., Charlot, B., Gómez, A., & Gich, M. (2020). Micro/nanostructure engineering of epitaxial piezoelectric α-quartz thin films on silicon. ACS Applied Materials & Interfaces. Citation: 31

Zhang, Q., Sánchez-Fuentes, D., Gómez, A., Desgarceaux, R., Charlot, B., Gázquez, J., Carretero-Genevrier, A., & Gich, M. (2019). Tailoring the crystal growth of quartz on silicon for patterning epitaxial piezoelectric films. Nanoscale Advances. Citation: 33

Zhang, F., Li, X., Zhao, Q., Zhang, Q., Tadé, M., & Liu, S. (2015). Fabrication of α-Fe₂O₃/In₂O₃ composite hollow microspheres: A novel hybrid photocatalyst for toluene degradation under visible light. Journal of Colloid and Interface Science. Citation: 86

Zhang, Q., Li, X., Zhao, Q., Shi, Y., Zhang, F., Liu, B., Ke, J., & Wang, L. (2015). Photocatalytic degradation of gaseous toluene over bcc-In₂O₃ hollow microspheres. Applied Surface Science. Citation: 32

Fu Lei | Corrosion Fatigue | Best Researcher Award

Prof. Fu Lei | Corrosion Fatigue | Best Researcher Award

Professor at Sichuan University of Science & Engineering | China

Professor Fu Lei, a distinguished materials scientist at Sichuan University of Science and Engineering, specializes in fatigue, fracture, and structural reliability of metallic systems. His research bridges experimental and computational mechanics, focusing on failure prediction, damage evolution, and fatigue-corrosion interactions in advanced alloys and composites. He has led more than 30 national and regional projects, notably under the National Natural Science Foundation of China, covering aerospace, nuclear, and new-energy applications. His Scopus record lists 32 documents, 127 citations, and an h-index of 7, demonstrating sustained scientific impact. His studies on hydrogen-induced fracture, micro-defect propagation, and microbiologically influenced corrosion have refined theoretical and experimental understanding of structural materials under coupled stresses. Beyond research, he has authored a monograph and contributed to developing fatigue-testing standards and additive-manufacturing methods for UAV composites and biomedical implants. Serving as Deputy Director of multiple provincial research centers, he fosters collaborative R&D between academia and industry, enabling technology transfer in functional materials and mechanical systems. Professor Fu’s integrated approach to mechanics, reliability engineering, and materials innovation underscores his global leadership and positions him as a top candidate for recognition under the Best Researcher Award.

Profiile : Scopus

Featured Publications

Fu, L., et al. (2025). Experimental study of the hydrogen fracture behavior of 30CrMo steel and simulation of hydrogen diffusion. JOM, [Advance online publication].

Fu, L., et al. (2025). Modification of graphene oxide composite coating on 7075 aluminum alloy and protection against Aspergillus niger corrosion. Anti-Corrosion Methods and Materials, [Advance online publication].

Fu, L., et al. (2025). Mechanics and long-term stability of porous titanium scaffolds with rhombic dodecahedrons. Journal of Materials Engineering and Performance, [Advance online publication].

 

Antoni Mir Pons | Smart Materials | Young Scientist Award

Mr. Antoni Mir Pons | Smart Materials | Young Scientist Award

University of the Balearic Islands | Spain

Mr. Antoni Mir Pons is a Spanish civil engineer specializing in construction engineering and structural reinforcement, currently serving as a researcher at the University of the Balearic Islands (UIB). He holds a Bachelor’s degree in Industrial Technologies Engineering and Business Administration and Management from the University of Girona. He also earned a Master’s in Industrial Engineering from UIB, where he received the Best Master’s Thesis award. His doctoral research focuses on the effects of semi-cyclic loading on structural reinforcement using iron-based shape-memory alloys (Fe-SMA). Pons has contributed to several international conferences, including SMAR 2024 in Salerno and the 15th fib International PhD Symposium in Budapest, presenting studies on Fe-SMA reinforced concrete structures. His research interests encompass concrete structures and blasting, with a particular emphasis on the application of Fe-SMA for strengthening existing structures. He has been involved in various R&D projects, such as RESTART and CICLO-ESTRUCTURA, focusing on the resilience of concrete infrastructure and the structural effects of cyclic overloads on Fe-SMA reinforced concrete beams. Pons has published articles in peer-reviewed journals, including “Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures” and “Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars,” both co-authored with Sandra del Río Bonnín, Carlos Ribas, and Antoni Cladera. His Scopus profile indicates 4 documents, 2 citations and an h-index of 1. Additionally, he has teaching experience in laboratory practices for the Structures I course in the Technical Architecture program at UIB. Pons is also active on ResearchGate, where he shares his publications and collaborates with fellow researchers.

Profile: Scopus 

Feautured Publilcations

Mir Pons, A., Del-Río-Bonnín, S., Ruiz-Pinilla, J. G., & Cladera, A. (2025). Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. Journal of Structural Engineering, 151(9), 04023109.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures. Materials and Structures, 57(6), 1–16.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars. Materials Science and Engineering: A, 859, 144151.

Mir Pons, A., Kustov, B., Ruiz Pinilla, J. G., & Cladera, A. (2024). Characterization of 11-mm Fe-SMA bars used as prestressing reinforcement in concrete structures. Proceedings of the 13th International Conference on Smart Materials and Nanotechnology in Engineering (SMN 2024), 1–8.

Mir Pons, A., Del Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on reinforced concrete beams strengthened with iron-based shape-memory alloy bars. Proceedings of the 15th fib International PhD Symposium in Civil Engineering, 1–8.

Qi Shi | Refractory Metals | Best Researcher Award

Qi Shi | Refractory metals | Best Researcher Award

Senior Engineer at Ningbo University of Technology | China

Assoc. Prof. Dr. Qi Shi is a distinguished researcher in materials science with a Ph.D. in Materials Science and Technology from Loughborough University, UK. Since returning to China, he has focused on the R&D of near-net-shape technologies, including advanced metal powders, powder metallurgy, and additive manufacturing. His pioneering work in radio-frequency (RF) plasma spheroidization of refractory metals has achieved breakthroughs in stable feeding technology for ultrafine powders, enabling consistent feeding and effective dispersion of low-density powders. He has also developed ultrasonic-fluidized bed wet classification methods for efficient micro-nano powder separation, leading to the production and commercialization of low-oxygen tantalum powder, ultrafine tungsten powder, and ultra-high hardness cast tungsten carbide powder. His research extends to metal additive manufacturing and post-processing, where he has advanced powder suitability evaluation and clarified the role of powder characteristics in selective laser melting (SLM). Through hot isostatic pressing and high-pressure heat treatment, he has enhanced strength–toughness synergy and significantly improved high-cycle fatigue performance in stainless steel, tantalum, and tungsten. Qi Shi has led five major government-funded projects, securing over RMB three million, and contributed to more than ten additional national and regional initiatives. He has published 35 academic papers in prestigious journals such as Additive Manufacturing, Materials Science and Engineering: A, and Journal of Materials Research and Technology, including 15 as first or corresponding author. According to his Scopus profile, he has more than 356 citations and an h-index of 13. He has also applied for 21 patents (15 granted), contributed to national standards, authored professional books, and received multiple awards, including the China Nonferrous Metals Industry Science and Technology Award (Second Prize) and the National Technical Standard Excellence Award (First Prize).

Profile: Scopus

Featured Publications

Shi, Q., Li, D., Du, W., Wu, A., & others. (2024). Improved mechanical properties and thermal conductivity of laser powder bed fused tungsten by using hot isostatic pressing. Cited by: 2

Pu, Y., Zhao, D., Liu, B., Shi, Q., & others. (2024). Microstructure evolution and mechanical properties of Ti-25Ta alloy fabricated by selective laser melting and hot isostatic pressing. Cited by: 1

Xu, J., Chen, H., Shi, Q., Liu, X., & others. (2024). Interdiffusion mechanism of hybrid interfacial layers for enhanced electrical resistivity and ultralow loss in Fe-based nanocrystalline soft magnetic composites. Cited by: 3

Qin, F., Shi, Q., Zhou, G., Wen, J., & others. (2024). Simultaneously enhanced strength and plasticity of laser powder bed fused tantalum by hot isostatic pressing. Cited by: 2

Qin, F., Shi, Q., Zhou, G., Yao, D., & others. (2023). Influence of powder particle size distribution on microstructure and mechanical properties of 17-4 PH stainless steel fabricated by selective laser melting. Cited by: 14