Dongxin Wang | Rare Metal Materials | Excellence in Research Award

Dr. Dongxin Wang | Rare Metal Materials | Excellence in Research Award

Director at State Key Laboratory of Special Rare Metal Materials | China

Dr. Dongxin Wang is a distinguished researcher recognized for impactful contributions to advanced materials and metallurgical research. His scholarly work emphasizes scientific rigor, innovation, and relevance to contemporary engineering challenges. He has published 41 peer-reviewed research documents, demonstrating sustained research productivity and academic leadership. His work has garnered 179 citations, reflecting strong visibility and influence within the international research community. With a Scopus h-index of 8, Dr. Wang’s research shows consistent citation performance across multiple publications. The quality, originality, and measurable impact of his research outputs clearly establish his suitability for the Excellence in Research Award, honoring significant and enduring contributions to research excellence.

Citation Metrics (Scopus)

200

100

50

25

0

Citations
179

Documents
41

h-index
8


View Scopus Profile

Featured Publications

Abdelhadi Kassiba | Photoactive Nanomaterials | Innovative Research Award

Prof. Dr. Abdelhadi Kassiba | Photoactive Nanomaterials | Innovative Research Award

Professor at IMMM, Institut des Molécules et Matériaux du Mans | France

Prof. Dr. AbdelHadi Kassiba is a leading innovator in condensed matter physics and functional nanomaterials, with pioneering contributions to wide bandgap semiconductors, nanocomposites, and photoactive oxides. His research combines advanced spectroscopic techniques with materials physics to uncover structure–property relationships critical for nonlinear optics, electro-optics, environmental remediation, and renewable energy applications. The originality and interdisciplinary nature of his work have resulted in strong global impact and scientific recognition. His Scopus profile reflects this influence, with 139 peer-reviewed publications, 2,766 citations, and an h-index of 29, demonstrating sustained research productivity, innovation, and long-term scholarly impact suitable for the Innovative Research Award.

Citation Metrics

3000

2000

500

100

0

Citations
2766

Documents
139

h-index
29

Featured Publications

Samir Farhat | 2D Boron Nitride | Advanced Alloys and Materials Award

Dr. Samir Farhat | 2D Boron Nitride | Advanced Alloys and Materials Award

Doctor at Sorbonne Paris Nord University | France

Samir Farhat is highly suitable for the Advanced Alloys and Materials Award based on his internationally recognized contributions to advanced materials processing and two-dimensional materials. His research has significantly advanced the synthesis and control of graphene, carbon nanotubes, diamond, and hexagonal boron nitride through innovative electromagnetic induction–based approaches, enabling scalable, reproducible, and high-quality material fabrication. Notably, he pioneered inductive synthesis routes for graphene with controlled domain size, developed the first inductive method for large-area single-crystal Cu(111) substrates, and achieved breakthrough synthesis of h-BN, highlighted by a journal cover feature. His work integrates experimental investigation with thermochemical and kinetic modeling, directly impacting advanced alloys, functional substrates, and next-generation materials systems. According to the Scopus profile, he has 1,051 citations, 63 peer-reviewed publications, and an h-index of 17, reflecting strong scholarly impact and sustained research excellence.

Citation Metrics (Scopus)

1400

1000

500

100

0

Citations
1,051

Documents
63

h-index
17

Featured Publications

Fahanwi Asabuwa Ngwabebhoh | Sustainable Materials | Research Excellence Award

Assist. Prof. Dr. Fahanwi Asabuwa Ngwabebhoh | Sustainable Materials | Research Excellence Award

Research Scientist at Kocaeli University | Turkey

Assist. Prof. Dr. Fahanwi Asabuwa Ngwabebhoh is a materials and polymer scientist recognized for advancing functional biomaterials, nanocomposites, and environmentally responsive polymers through research that integrates synthesis, structural modification, and performance optimization. His scientific work centers on bioinspired hydrogels, nanocellulose-derived systems, electroactive polymer composites, and sustainable biopolymer materials designed for applications in adsorption, drug delivery, wound healing, environmental remediation, energy storage, and biosensing. With 1,385 citations, 48 published documents, and a Scopus h-index of 19, he is widely acknowledged for producing high-impact research that bridges fundamental materials chemistry with practical technological solutions. His investigations have yielded important contributions to controlled drug delivery systems, injectable and self-crosslinking hydrogels, microbial cellulose biocomposites, conductive polymer–based electrodes for supercapacitors, photodegradation materials, and agro-waste-derived sustainable composites. He has also developed optimized nanostructured adsorbents and membrane systems for emerging pollutant removal, applying advanced modeling tools such as response surface methodology and kinetic–isotherm analysis to enhance material efficiency and predict functional behavior. His research on nitrogen-doped cellulose gels, enzymatically crosslinked hydrogels, and biodegradable nanofibrous scaffolds has been influential in both environmental and biomedical materials science. Dr. Ngwabebhoh’s work demonstrates strong interdisciplinary depth, combining polymer chemistry, nanotechnology, materials characterization, and applied engineering principles to generate innovation-driven scientific output. His publication profile and research achievements reflect impactful contributions that support sustainable technologies, advanced biomaterials, and green material design, establishing him as a leading researcher suited for recognition through the Research Excellence Award.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Ngwabebhoh, F. A., Gazi, M., & Oladipo, A. A. (2016). Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chemical Engineering Research and Design. Citation: 173

Ngwabebhoh, F. A., Erdagi, S. I., & Yildiz, U. (2018). Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydrate Polymers. Citation: 165

Erdagi, S. I., Ngwabebhoh, F. A., & Yildiz, U. (2020). Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. International Journal of Biological Macromolecules. Citation: 142

Nguyen, T. H., Fei, H., Sapurina, I., Ngwabebhoh, F. A., Bubulinca, C., Munster, L., & others. (2021). Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochimica Acta. Citation: 131

Ngwabebhoh, F. A., Zandraa, O., Patwa, R., Saha, N., Capáková, Z., & Saha, P. (2021). Self-crosslinked chitosan/dialdehyde xanthan gum blended hypromellose hydrogel for the controlled delivery of ampicillin, minocycline and rifampicin. International Journal of Biological Macromolecules. Citation: 103

Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Mr. Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Assistant Professor at Gumushane University | Turkey

Mr. Suleyman Sukuroglu is a materials and surface engineering researcher whose work centers on advanced coating technologies, particularly micro-arc oxidation (MAO) and plasma electrolytic oxidation (PEO), applied to lightweight structural alloys such as magnesium, aluminum, titanium, and NiTi. With 149 citations, 12 Scopus-indexed publications, and an h-index of 7, he has contributed substantially to understanding and improving the mechanical, corrosion, wear, adhesion, tribocorrosion, and biocompatibility properties of ceramic and nanocomposite coatings. His studies involve the incorporation of functional nanoparticles-including TiB₂, ZnO, h-BN, graphene oxide, Ag, MoS₂, and sodium pentaborate-into oxide layers to enhance structural stability and multifunctional performance. He has published high-quality research demonstrating improvements in coating morphology, oxide layer integrity, and interfacial adhesion, contributing to the advancement of durable and corrosion-resistant surfaces for both industrial and biomedical applications. His work on NiTi shape-memory alloys and WE43 magnesium alloys has expanded knowledge on biocompatible coatings, corrosion control, and surface modification strategies for engineering systems. His research output appears in respected international journals such as Materials Today Communications, Journal of Adhesion Science and Technology, Applied Physics A, Arabian Journal for Science and Engineering, and multiple materials science conference proceedings. He has also contributed to national research projects involving tribological optimization, nanoparticle-reinforced oxide layers, and coating performance evaluation under challenging environments. Through sustained scientific output, a clear thematic research focus, and contributions to materials characterization and surface technologies, he has established a recognized academic profile within the fields of metallurgical engineering and surface modification science.

Profiles : Scopus | ORCID

Featured Publications

Belet, A. K., Şüküroğlu, S., & Şüküroğlu, E. E. (2025). Investigation of structural and adhesion properties of ZnO and h-BN doped TiO₂ coatings on Cp–Ti alloy. Journal of Adhesion Science and Technology.

Şüküroğlu, S. (2025). Characterization, corrosion, adhesion and wear properties of Al₂O₃ and Al₂O₃:TiB₂ composite coating on Al 7075 aluminum alloy by one-step micro-arc oxidation method. Materials Today Communications.

Şüküroğlu, S., Şüküroğlu, E. E., Totik, Y., Gülten, G., Efeoğlu, İ., & Avcı, S. (2024). Corrosion and adhesion properties of MAO-coated LA91 magnesium alloy. Materials Science and Technology.

Şüküroğlu, S., Totik, Y., Şüküroğlu, E. E., & Avcı, S. (2024). Investigation of corrosion properties of LA-91 alloy coated with MAO method. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C.

Şüküroğlu, S. (2023). Al 2024 alaşımı üzerine mikro ark oksidasyon yöntemiyle B4C ilaveli kompozit kaplamaların büyütülmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi.

Abid Hussain | Shape Memory Alloys | Best Researcher Award

Dr. Abid Hussain | Shape Memory Alloys | Best Researcher Award

Lab Engineer at University of Engineering and Technology, Peshawar | Pakistan

Dr. Abid Hussain is a mechanical and materials engineer recognized for his multidisciplinary research in advanced alloys, renewable energy technologies, and computational modeling. His studies focus on the development and enhancement of TiNiPdCu-based shape memory alloys produced via powder metallurgy, targeting high-temperature applications in energy and aerospace systems. He has also explored solar-driven water purification, Stirling engine design, and absorption cooling systems that integrate sustainable energy sources. Dr. Hussain’s research extends into computational fluid dynamics and structural analysis, emphasizing the mechanical performance of engineered systems under diverse environmental and seismic conditions. His publication record reflects a strong commitment to materials innovation, energy efficiency, and environmental sustainability. With 69 citations, 9 indexed documents, and an h-index of 5 in Scopus, Dr. Hussain continues to contribute impactful knowledge that advances metallurgical and mechanical engineering frontiers globally.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Manzoor, F., Wei, L., Hussain, A., Asif, M., & Shah, S. I. A. (2019). Patient satisfaction with health care services: An application of physician’s behavior as a moderator. International Journal of Environmental Research and Public Health, 16(18), 3318. Cited by 649 documents.

Klein Tank, A. M. G., Peterson, T. C., Quadir, D. A., Dorji, S., Zou, X., Tang, H., … Hussain, A. (2006). Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research: Atmospheres, 111(D16). Cited by 630 documents.

Qing, M., Asif, M., Hussain, A., & Jameel, A. (2020). Exploring the impact of ethical leadership on job satisfaction and organizational commitment in public sector organizations: The mediating role of psychological empowerment. Review of Managerial Science, 14(6), 1405–1432. Cited by 515 documents.

Cheema, M. A., Malik, M. A., Hussain, A., Shah, S. H., & Basra, S. M. A. (2001). Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus L.). Journal of Agronomy and Crop Science, 186(2), 103–110. Cited by 308 documents.

Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., & … (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. Cited by 306 documents.

Antoni Mir Pons | Smart Materials | Young Scientist Award

Mr. Antoni Mir Pons | Smart Materials | Young Scientist Award

University of the Balearic Islands | Spain

Mr. Antoni Mir Pons is a Spanish civil engineer specializing in construction engineering and structural reinforcement, currently serving as a researcher at the University of the Balearic Islands (UIB). He holds a Bachelor’s degree in Industrial Technologies Engineering and Business Administration and Management from the University of Girona. He also earned a Master’s in Industrial Engineering from UIB, where he received the Best Master’s Thesis award. His doctoral research focuses on the effects of semi-cyclic loading on structural reinforcement using iron-based shape-memory alloys (Fe-SMA). Pons has contributed to several international conferences, including SMAR 2024 in Salerno and the 15th fib International PhD Symposium in Budapest, presenting studies on Fe-SMA reinforced concrete structures. His research interests encompass concrete structures and blasting, with a particular emphasis on the application of Fe-SMA for strengthening existing structures. He has been involved in various R&D projects, such as RESTART and CICLO-ESTRUCTURA, focusing on the resilience of concrete infrastructure and the structural effects of cyclic overloads on Fe-SMA reinforced concrete beams. Pons has published articles in peer-reviewed journals, including “Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures” and “Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars,” both co-authored with Sandra del Río Bonnín, Carlos Ribas, and Antoni Cladera. His Scopus profile indicates 4 documents, 2 citations and an h-index of 1. Additionally, he has teaching experience in laboratory practices for the Structures I course in the Technical Architecture program at UIB. Pons is also active on ResearchGate, where he shares his publications and collaborates with fellow researchers.

Profile: Scopus 

Feautured Publilcations

Mir Pons, A., Del-Río-Bonnín, S., Ruiz-Pinilla, J. G., & Cladera, A. (2025). Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. Journal of Structural Engineering, 151(9), 04023109.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures. Materials and Structures, 57(6), 1–16.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars. Materials Science and Engineering: A, 859, 144151.

Mir Pons, A., Kustov, B., Ruiz Pinilla, J. G., & Cladera, A. (2024). Characterization of 11-mm Fe-SMA bars used as prestressing reinforcement in concrete structures. Proceedings of the 13th International Conference on Smart Materials and Nanotechnology in Engineering (SMN 2024), 1–8.

Mir Pons, A., Del Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on reinforced concrete beams strengthened with iron-based shape-memory alloy bars. Proceedings of the 15th fib International PhD Symposium in Civil Engineering, 1–8.

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Doctor at China Jiliang University | China

Dr. Chen Xu is an Assistant Research Fellow at China Jiliang University specializing in the metallurgy and materials science of magnesium, aluminum, titanium, and copper alloys. He earned his Ph.D. in Materials Science and Engineering from Zhengzhou University, following an M.D. in Metallurgical Engineering from Lanzhou University of Technology and a B.A. in Metallurgical Engineering from Lanzhou College of Information Science and Technology. His research spans melting processes, microstructure, heat treatment, deformation treatment, corrosion resistance, coatings, martensitic transformations, and first-principles calculations. Dr. Xu has contributed to several national research projects, including those funded by the National Natural Science Foundation of China, and has authored multiple peer-reviewed publications in high-impact journals such as Materials & Design, Journal of Magnesium and Alloys, Materials Science & Engineering A, and Journal of Alloys and Compounds. His recent works cover topics like heat treatment effects on Mg-Sc alloys, martensitic transformation behavior, micro-galvanic corrosion, and advanced aluminum-titanium-carbon master alloys. He has also published research on the optimization of aluminum alloys and collaborated on interdisciplinary studies involving carbon quantum dots for cancer therapy. With a 7 Scopus-indexed publications citation count of 67 and an h-index of 4 on Scopus, his profile is at an early stage of international recognition, supported by active involvement in national projects, editorial board membership with Modern Chemical Research, and patent applications. Chen Xu’s contributions demonstrate a clear trajectory toward impactful innovations in advanced materials engineering, combining experimental studies with computational insights to advance alloy design and performance.

Profile: Scopus | ORCID

Featured Publicationns

Xu, C., Liu, S., Wang, J., & Li, H. (2023). Initial micro-galvanic corrosion behavior between Mg₂Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation. Journal of Magnesium and Alloys, 11(3), 958–965. Cited by: 21

Xu, C. (2023). Martensitic transformation behavior during tensile testing at room temperature in β-type Mg-35 wt%Sc alloy. Materials Science & Engineering A, 865, 144602. Cited by: 7

Xu, C. (2023). Effect of quenching temperature on microstructure and mechanical properties of Mg-35 wt%Sc alloy. Journal of Alloys and Compounds, 943, 169165. Cited by: 5

Xu, C. (2019). Preparation and synthesis thermokinetics of novel Al-Ti-C-La composite master alloys. Journal of Alloys and Compounds, 776, 904–911. Cited by: 43

Xu, C. (2017). Effect of Al-5Ti-0.62C-0.2Ce master alloy on the microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy. Metals, 7(6), 227. Cited by: 52

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Research scholar at Federal University of Rio Grande |  Brazil

Prof. Dr. Michele Greque de Morais is a distinguished scholar at the Federal University of Rio Grande, recognized for her pioneering research in food engineering, biotechnology, and nanobiotechnology. She earned her degrees in Food Science and Engineering at FURG, complemented by international academic experiences at Philipps-Universität Marburg in Germany, the Scripps Institution of Oceanography, and the University of California, San Diego. Her scientific output is extensive, with over 150 peer-reviewed journal articles, 56 book chapters, 58 published books, and more than 200 conference papers. She has also contributed significantly to innovation with 27 patents and the development of 13 technological products. According to Scopus, she has authored 185 indexed works, accumulating 7246 citations with a robust h-index of 47, reflecting the global impact and recognition of her research contributions. Beyond academia, she has led 33 completed and 23 ongoing research projects, partnered with industries in 16 consultancy projects, and played key roles in national and international collaborations focused on sustainable development, microalgae-based bioproducts, and carbon biofixation technologies. Her editorial leadership includes serving as Associate Editor for Bioresource Technology. She has supervised numerous graduate and postgraduate students, shaping future generations of researchers, and has been recognized among the world’s most influential scientists by PLOS Biology. Through her dedication to advancing sustainable bioprocesses, food security, and biotechnology applications, Professor Michele Greque de Morais has established herself as a leading researcher with a profound impact on both scientific knowledge and societal development

Pofile: ScopusORCID | Google Scholar

Featured Publication

De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.

De Morais, M. G., Vaz, B. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015(1), 835761.

De Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal-fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173.

De Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9.

da Silva Vaz, B., Moreira, J. B., De Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77.

Yohannes Shuka Jara | Nano Materials | Best Researcher Award

Mr. Yohannes Shuka Jara | Nano Materials | Best Researcher Award

Lecturer and Researcher at Borana University, Ethiopia. 

Yohannes Shuka Jara (MSc) is a dedicated lecturer and researcher in the Department of Chemistry at Borana University, Ethiopia. With a specialization in physical chemistry, his work focuses on green synthesis of nanoparticles and their applications in energy conversion, sensing, catalysis, and environmental remediation. He earned his MSc with distinction (CGPA 4.00) from Hawassa University and BSc from Dilla University. Yohannes is a published researcher with active profiles on platforms like Scopus, ResearchGate, and Google Scholar. His innovative research, academic excellence, and consistent contributions to sustainable development make him an outstanding candidate for the Best Researcher Award. His dual roles in teaching and laboratory management further reflect his commitment to science and community impact.

Professional Profiles📖

Scopus

ORCID

Google Scholar

Education 🎓

Yohannes Shuka Jara holds a Master of Science degree in Physical Chemistry from Hawassa University, Ethiopia, completed in 2024 with a perfect CGPA of 4.00. His graduate studies focused on the green synthesis of nanoparticles and their sustainable technological applications. He previously earned his Bachelor of Science degree in Chemistry from Dilla University in 2019, graduating with a CGPA of 3.78. His academic path demonstrates strong theoretical grounding and practical experience in materials chemistry, nanotechnology, and applied sciences. Yohannes is known for academic diligence and research excellence, having undertaken numerous advanced research projects related to green energy, electrochemical sensing, and environmental remediation during his studies. His academic foundation strongly supports his teaching and research pursuits.

Professional Experience💼

Yohannes Shuka Jara is currently serving as a Lecturer of Physical Chemistry at Borana University since October 2024, where he teaches undergraduate students and leads research projects. He concurrently works as Chief-in Laboratory Chemist and Researcher at Madda Walabu University, a role he began in September 2024. Before this, he served as a Senior Technical Assistant in the same department at Madda Walabu University from January 2020 to September 2024. Over these years, Yohannes has gained valuable experience in laboratory management, curriculum delivery, and research implementation. His dual appointments reflect a commitment to both academic growth and institutional development. His practical and theoretical expertise strengthens his contributions to teaching, laboratory supervision, and high-impact scientific research.

Award and Honors🏅

Yohannes Shuka Jara has earned academic distinction and recognition for his exceptional performance and research contributions. He graduated with the highest honors from both Hawassa University (CGPA 4.00) and Dilla University (CGPA 3.78). His excellence in nanomaterials research has led to recognition in academic circles, with active research profiles on platforms like Scopus, ResearchGate, and ORCID. His work on sustainable nanoparticle synthesis and environmental remediation has been presented and published in reputed journals and conferences. While formal national or international awards are forthcoming, his reputation for academic leadership, innovation, and scientific integrity continues to grow. He is frequently invited to collaborate and advise on green chemistry projects, making him a rising figure in Ethiopia’s scientific community.

Research Focus 🔍

Yohannes Shuka Jara’s research focuses on the green synthesis of nanoparticles and the engineering of metal oxide semiconductors for sustainable applications. His work addresses critical global challenges in renewable energy, environmental remediation, and sensor technology. Specific research themes include electrochemical and bio-nano sensors, green catalysis design, photocatalytic degradation of pollutants, and sustainable energy conversion systems. His MSc research explored environmentally friendly routes to develop functional nanomaterials with high efficiency and low toxicity. Yohannes combines experimental chemistry with applied research to create materials that are scalable and eco-friendly. His interdisciplinary focus bridges materials science, chemistry, and environmental engineering, with a commitment to innovation that benefits both scientific understanding and societal needs.

Conclusion ✅

Yohannes Shuka Jara is highly suitable for the Best Researcher Award, particularly in categories like:Nano Materials AwardGreen Synthesis AwardEmerging Nano Researcher AwardEnvironmental Nanotech AwardHis academic record, research output, and thematic relevance align perfectly with the goals of recognizing innovation, sustainability, and excellence in research.

Publications to Noted📚

📘 Biosynthesized pure CuO, N-CuO, Zn-CuO, and N-Zn-CuO nanoparticles for photocatalytic activity: Enhanced optical properties through bandgap engineering
📅 Year: 2025  🔗 DOI: 10.1016/j.nxmate.2025.100742

🧪 Improving the power production efficiency of microbial fuel cell by using biosynthesized polyaniline coated Fe₃O₄ as pencil graphite anode modifier
📅 Year: 2025  🔗 DOI: 10.1038/s41598-024-84311-5

🧫 Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia Amygdalina leaf extract
📅 Year: 2024 🔗 DOI: 10.1038/s41598-024-57554-5

🌿 Novel Biomaterial-Derived Activated Carbon from Lippia Adoensis (Var. Koseret) Leaf for Efficient Organic Pollutant Dye Removal from Water Solution
📅 Year: 2024  🔗 DOI: 10.11648/j.ajac.20241202.11