Dr. Farid Ahmed | Supramolecular Chemistry | Best Researcher Award

Dr. Farid Ahmed | Supramolecular Chemistry | Best Researcher Award

Associate Researcher at Shenzhen University | Pakistan

Dr. Farid Ahmed, Ph.D., is a distinguished researcher in organic and supramolecular chemistry with a focus on functional materials, catalysis, and luminescent lanthanide-based systems. He is currently a Research Associate at the Institute for Advanced Study (IAS), Shenzhen University, China, where he continues his postdoctoral research on lanthanide-coordinated crown ether-modified DNA and related luminescent materials. He earned his Ph.D. in Organic Chemistry from the H.E.J. Research Institute of Chemistry, University of Karachi, Pakistan, where his doctoral research involved the synthesis and characterization of thioether-based supramolecules and the evaluation of their photophysical and biological properties under the supervision of Prof. Muhammad Raza Shah. Prior to that, he completed his M.Sc. in Organic Chemistry at the Federal Urdu University of Arts, Science and Technology, Karachi, and a B.Sc. in Pre-Engineering from the University of Karachi. Dr. Ahmed has authored 57 peer-reviewed publications with over 1,153 citations and an h-index of 20 (Scopus), including recent works on synergistic citrazinic acid-functionalized silver nanoparticles for environmental remediation, field-portable colorimetric assays for pharmaceutical detection, and advancements in lanthanide-doped luminescent supramolecular hydrogels. His expertise spans organic synthesis, coordination chemistry, COFs/MOFs, functional nanomaterials, photocatalysts, and energy storage materials. He is proficient in advanced spectroscopic, microscopic, and computational techniques, including NMR, MS, FTIR, TEM, AFM, SEM, and Python/MATLAB-based data analysis. Dr. Ahmed has presented his work at numerous international symposia and received merit-based scholarships during his academic career, reflecting his dedication to innovative chemical research and applications.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Ahmed, F., & Xiong, H. (2021). Recent developments in 1, 2, 3-triazole-based chemosensors. Dyes and Pigments, 185, 108905. Cited by 119

Imran, M., Shah, M. R., Ullah, F., Ullah, S., Elhissi, A. M. A., Nawaz, W., Ahmed, F., … (2016). Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. International Journal of Pharmaceutics, 505(1-2), 122–132. Cited by 89

Hussain, M. M., Khan, W. U., Ahmed, F., Wei, Y., & Xiong, H. (2023). Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chemical Engineering Journal, 465, 143010. Cited by 79

Ahmed, F., Kabir, H., & Xiong, H. (2020). Dual colorimetric sensor for Hg²⁺/Pb²⁺ and an efficient catalyst based on silver nanoparticles mediating by the root extract of Bistorta amplexicaulis. Frontiers in Chemistry, 8, 591958. Cited by 79

ul Ain, N., Anis, I., Ahmed, F., Shah, M. R., Parveen, S., Faizi, S., & Ahmed, S. (2018). Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sensors and Actuators B: Chemical, 265, 617–624. Cited by 67

Antoni Mir Pons | Smart Materials | Young Scientist Award

Mr. Antoni Mir Pons | Smart Materials | Young Scientist Award

University of the Balearic Islands | Spain

Mr. Antoni Mir Pons is a Spanish civil engineer specializing in construction engineering and structural reinforcement, currently serving as a researcher at the University of the Balearic Islands (UIB). He holds a Bachelor’s degree in Industrial Technologies Engineering and Business Administration and Management from the University of Girona. He also earned a Master’s in Industrial Engineering from UIB, where he received the Best Master’s Thesis award. His doctoral research focuses on the effects of semi-cyclic loading on structural reinforcement using iron-based shape-memory alloys (Fe-SMA). Pons has contributed to several international conferences, including SMAR 2024 in Salerno and the 15th fib International PhD Symposium in Budapest, presenting studies on Fe-SMA reinforced concrete structures. His research interests encompass concrete structures and blasting, with a particular emphasis on the application of Fe-SMA for strengthening existing structures. He has been involved in various R&D projects, such as RESTART and CICLO-ESTRUCTURA, focusing on the resilience of concrete infrastructure and the structural effects of cyclic overloads on Fe-SMA reinforced concrete beams. Pons has published articles in peer-reviewed journals, including “Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures” and “Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars,” both co-authored with Sandra del Río Bonnín, Carlos Ribas, and Antoni Cladera. His Scopus profile indicates 4 documents, 2 citations and an h-index of 1. Additionally, he has teaching experience in laboratory practices for the Structures I course in the Technical Architecture program at UIB. Pons is also active on ResearchGate, where he shares his publications and collaborates with fellow researchers.

Profile: Scopus 

Feautured Publilcations

Mir Pons, A., Del-Río-Bonnín, S., Ruiz-Pinilla, J. G., & Cladera, A. (2025). Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. Journal of Structural Engineering, 151(9), 04023109.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures. Materials and Structures, 57(6), 1–16.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars. Materials Science and Engineering: A, 859, 144151.

Mir Pons, A., Kustov, B., Ruiz Pinilla, J. G., & Cladera, A. (2024). Characterization of 11-mm Fe-SMA bars used as prestressing reinforcement in concrete structures. Proceedings of the 13th International Conference on Smart Materials and Nanotechnology in Engineering (SMN 2024), 1–8.

Mir Pons, A., Del Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on reinforced concrete beams strengthened with iron-based shape-memory alloy bars. Proceedings of the 15th fib International PhD Symposium in Civil Engineering, 1–8.

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Doctor at China Jiliang University | China

Dr. Chen Xu is an Assistant Research Fellow at China Jiliang University specializing in the metallurgy and materials science of magnesium, aluminum, titanium, and copper alloys. He earned his Ph.D. in Materials Science and Engineering from Zhengzhou University, following an M.D. in Metallurgical Engineering from Lanzhou University of Technology and a B.A. in Metallurgical Engineering from Lanzhou College of Information Science and Technology. His research spans melting processes, microstructure, heat treatment, deformation treatment, corrosion resistance, coatings, martensitic transformations, and first-principles calculations. Dr. Xu has contributed to several national research projects, including those funded by the National Natural Science Foundation of China, and has authored multiple peer-reviewed publications in high-impact journals such as Materials & Design, Journal of Magnesium and Alloys, Materials Science & Engineering A, and Journal of Alloys and Compounds. His recent works cover topics like heat treatment effects on Mg-Sc alloys, martensitic transformation behavior, micro-galvanic corrosion, and advanced aluminum-titanium-carbon master alloys. He has also published research on the optimization of aluminum alloys and collaborated on interdisciplinary studies involving carbon quantum dots for cancer therapy. With a 7 Scopus-indexed publications citation count of 67 and an h-index of 4 on Scopus, his profile is at an early stage of international recognition, supported by active involvement in national projects, editorial board membership with Modern Chemical Research, and patent applications. Chen Xu’s contributions demonstrate a clear trajectory toward impactful innovations in advanced materials engineering, combining experimental studies with computational insights to advance alloy design and performance.

Profile: Scopus | ORCID

Featured Publicationns

Xu, C., Liu, S., Wang, J., & Li, H. (2023). Initial micro-galvanic corrosion behavior between Mg₂Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation. Journal of Magnesium and Alloys, 11(3), 958–965. Cited by: 21

Xu, C. (2023). Martensitic transformation behavior during tensile testing at room temperature in β-type Mg-35 wt%Sc alloy. Materials Science & Engineering A, 865, 144602. Cited by: 7

Xu, C. (2023). Effect of quenching temperature on microstructure and mechanical properties of Mg-35 wt%Sc alloy. Journal of Alloys and Compounds, 943, 169165. Cited by: 5

Xu, C. (2019). Preparation and synthesis thermokinetics of novel Al-Ti-C-La composite master alloys. Journal of Alloys and Compounds, 776, 904–911. Cited by: 43

Xu, C. (2017). Effect of Al-5Ti-0.62C-0.2Ce master alloy on the microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy. Metals, 7(6), 227. Cited by: 52

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Research scholar at Federal University of Rio Grande |  Brazil

Prof. Dr. Michele Greque de Morais is a distinguished scholar at the Federal University of Rio Grande, recognized for her pioneering research in food engineering, biotechnology, and nanobiotechnology. She earned her degrees in Food Science and Engineering at FURG, complemented by international academic experiences at Philipps-Universität Marburg in Germany, the Scripps Institution of Oceanography, and the University of California, San Diego. Her scientific output is extensive, with over 150 peer-reviewed journal articles, 56 book chapters, 58 published books, and more than 200 conference papers. She has also contributed significantly to innovation with 27 patents and the development of 13 technological products. According to Scopus, she has authored 185 indexed works, accumulating 7246 citations with a robust h-index of 47, reflecting the global impact and recognition of her research contributions. Beyond academia, she has led 33 completed and 23 ongoing research projects, partnered with industries in 16 consultancy projects, and played key roles in national and international collaborations focused on sustainable development, microalgae-based bioproducts, and carbon biofixation technologies. Her editorial leadership includes serving as Associate Editor for Bioresource Technology. She has supervised numerous graduate and postgraduate students, shaping future generations of researchers, and has been recognized among the world’s most influential scientists by PLOS Biology. Through her dedication to advancing sustainable bioprocesses, food security, and biotechnology applications, Professor Michele Greque de Morais has established herself as a leading researcher with a profound impact on both scientific knowledge and societal development

Pofile: ScopusORCID | Google Scholar

Featured Publication

De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.

De Morais, M. G., Vaz, B. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015(1), 835761.

De Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal-fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173.

De Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9.

da Silva Vaz, B., Moreira, J. B., De Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77.

Oriol Gavalda Diaz | Micromechanics | Best Researcher Award

Assist. Prof. Dr. Oriol Gavalda Diaz | Micromechanics | Best Researcher Award

Imperial College London | United Kingdom

Assist. Prof. Dr. Oriol Gavalda-Diaz is a materials scientist whose research bridges advanced ceramics, fracture mechanics, and structural composites. His work focuses on pushing the limits of mechanical performance by combining experimental micromechanics with state-of-the-art characterisation methods. Through his leadership, he has contributed significantly to the understanding of fracture processes at micro, nano, and atomic scales, establishing new pathways to engineer tougher structural and functional ceramics. His academic journey has been shaped by training in aerospace and materials engineering, leading to his role as a lecturer in ceramics at Imperial College London. He has held research positions at leading institutions, collaborated with industrial partners, and built strong networks across academia and industry. Beyond research, he has contributed to education, outreach, and mentorship, inspiring the next generation of engineers and scientists. With more than two dozen publications and patents, his work reflects both academic excellence and industrial relevance.

Professional Profile

Scopus | ORCID | Google Scholar

Education

Assist. Prof. Dr. Oriol Gavalda-Diaz pursued his academic path across leading European institutions, beginning with a bachelor’s degree in aerospace engineering from the Universitat Politècnica de Catalunya in Barcelona. He then specialized further with a master’s degree in aerospace engineering, focusing on structures and materials, from the Université de Bordeaux in France. Building on this foundation, he completed his doctoral studies in manufacturing and materials engineering at the University of Nottingham in the United Kingdom. His PhD research combined advanced micromechanical testing and characterisation of structural ceramics and composites, guided by internationally recognized experts in the field. This educational trajectory provided him with an integrated understanding of both the theoretical and applied aspects of aerospace structures, materials design, and ceramic composites. His cross-disciplinary academic formation positioned him to develop novel experimental methods, address complex material challenges, and lead high-impact research in fracture mechanics, ceramics, and composite structures.

Experience

Assist. Prof. Dr. Oriol Gavalda-Diaz has developed a dynamic academic career that spans postdoctoral research, independent fellowship positions, and a lectureship at Imperial College London. His early postdoctoral research centered on micromechanical testing and in-situ characterisation, enabling breakthroughs in the understanding of ceramic and composite fracture processes. He later secured a transitional assistant professorship at the University of Nottingham, supported by competitive fellowship funding, where he led independent projects on fracture mechanics and ceramic composites. Returning to Imperial College London, he took on the role of lecturer in ceramics within the Department of Materials, where he now directs a growing research group equipped with advanced in-situ testing facilities. His teaching portfolio includes undergraduate and postgraduate courses in fracture mechanics, surfaces and interfaces, and structural ceramics. He has also supervised multiple doctoral and master’s students, guiding them through projects funded by both national research councils and industrial collaborations.

Awards and Honors

Assist. Prof. Dr. Oriol Gavalda-Diaz has received several notable fellowships and recognitions that highlight his academic leadership and research excellence. Among them is the prestigious Transitional Assistant Professor Fellowship, awarded through the EPSRC Composites Manufacturing Hub, which provided long-term support for independent research at the University of Nottingham. He was also offered the María Zambrano Fellowship from the Spanish government, acknowledging his international standing as an early-career researcher. His invited talks at major international conferences, including gatherings organized by the European Ceramic Society, UCSB, and the International Ceramics Congress, have further reinforced his reputation as a leading expert in ceramics and fracture mechanics. In addition, he has been entrusted with organizing conferences and summer schools, such as the CASC Summer School in Ceramics, reflecting his strong role in scientific community building. His contributions are widely recognized by peers, journals, and institutions across the field of materials science.

Research Focus

The research of Assist. Prof. Dr. Oriol Gavalda-Diaz centers on advancing the mechanical performance of ceramics and ceramic composites by developing innovative experimental testing and characterisation techniques. His vision is rooted in understanding fracture across multiple length scales, from atomic-level mechanisms to structural behavior. By employing advanced in-situ methods in optical, SEM, and TEM platforms, his group investigates crack-tip behavior, interfacial fracture, and thermomechanical degradation. His work not only advances fundamental scientific knowledge but also has direct industrial applications, particularly in aerospace, energy, and structural engineering. He collaborates extensively with industry partners to explore repair, healing, and performance optimization of ceramic composites under extreme conditions. With over 28 publications in leading journals, his research combines rigorous scientific inquiry with practical relevance. He also places strong emphasis on training the next generation of researchers, embedding mentorship, teaching, and sustainability into his research program.

Publication top Notes

The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity
Cited by: 356
Year: 2019

State-of-the-art of surface integrity in machining of metal matrix composites
Cited by: 249
Year: 2019

Grain refinement mechanism of nickel-based superalloy by severe plastic deformation–mechanical machining case
Cited by: 178
Year: 2019

Towards understanding the cutting and fracture mechanism in ceramic matrix composites
Cited by: 125
Year: 2017

On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process
Cited by: 113
Year: 2019

Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface
Cited by: 43
Year: 2023

Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage
Cited by: 42
Year: 2022

Conclusion

Assist. Prof. Dr. Oriol Gavalda-Diaz is exceptionally well-qualified for the Best Researcher Award. His strong record of publications, successful acquisition of competitive grants, and demonstrated leadership in both academic and industrial collaborations place him among the most promising researchers in advanced materials. His combination of scientific excellence, mentorship, and community engagement aligns perfectly with the award’s vision to honor impactful and innovative researchers. With further expansion into broader interdisciplinary and international arenas, his influence on the future of materials science is set to grow even stronger.

 

Qiangqiang Tan | Conversion Materials | Outstanding Contribution Award

Prof. Dr. Qiangqiang Tan | Conversion Materials | Outstanding Contribution Award

Professor at Institute of Process Engineering, Chinese Academy of Sciences, China.

🌟 Dr. Qiangqiang Tan, a Ph.D. graduate and professor, leads groundbreaking research in advanced energy materials at the Chinese Academy of Sciences (CAS). As the Group Leader of Advanced Energy Materials at the State Key Laboratory of Mesoscience and Engineering, he has significantly contributed to sustainable energy technologies. With expertise in lithium and sodium-ion batteries, functional composite materials, and core industrialization technologies, Dr. Tan has established state-of-the-art production lines for cathode materials and test platforms. His innovative work includes hosting over 60 research projects and publishing 100+ impactful papers in international journals like Nano Energy and J. Power Sources. A prolific inventor, he holds 253 patents, including several international patents. Dr. Tan’s dedication to innovation has earned him numerous prestigious awards, including the Golden Bridge Award and multiple provincial innovation prizes. His passion drives the development of transformative technologies for a sustainable future. 🌍🔋✨

 

Professional Profiles📖

ORCID

Scopus

Education 🎓

🎓 Dr. Qiangqiang Tan’s academic journey began at the University of Science and Technology, Beijing (1999–2003), where he earned his doctorate in materials science and engineering. 🏫📜 During his studies, he focused on advanced materials for energy storage systems, laying the foundation for his groundbreaking contributions to sustainable energy technologies. His rigorous academic training equipped him with a deep understanding of energy materials’ theoretical and practical aspects. Alongside his doctoral research, Dr. Tan actively engaged in scientific collaborations, expanding his expertise in advanced synthesis methods and characterization techniques. 💡🔬 His dedication and academic excellence have not only shaped his career as a leading scientist but also inspired the next generation of researchers in the field of advanced energy materials. 🌟📖

Professional Experience💼

🌟 Dr. Qiangqiang Tan’s professional career spans over two decades of excellence in research and innovation. Currently a professor at the Institute of Process Engineering, CAS (2012–Present), he previously served as an associate professor (2006–2012) and postdoctoral researcher (2003–2005) at the same institute. During his tenure, Dr. Tan has held leadership roles, including Director of Science and Technology Development Division and Director of Industrial Development, showcasing his strategic vision in advancing energy technologies. 🚀 He has established industrial production lines for cathode materials and functional composites, bridging the gap between laboratory research and industrial application. Dr. Tan’s work embodies the integration of academic knowledge with practical industrial solutions, driving innovation in energy materials and contributing to national and global sustainability goals. 🔋🌍 His extensive experience highlights a career dedicated to impactful research and transformative technological advancements.

Award and Honors🏅

🏆 Dr. Qiangqiang Tan has garnered over 30 prestigious awards, reflecting his dedication to innovation and excellence. Notable achievements include the Golden Bridge Award for outstanding technological contributions and multiple first prizes in Hebei Province’s innovation and entrepreneurship competitions (2021–2024). 🌟 He also earned the “Outstanding Contribution Project Award” for new material technologies and was recognized among the “Top 100 New Technology and New Product Innovations” in 2016. As a committed educator and innovator, Dr. Tan received accolades for advancing industry-university collaboration and transforming scientific research into impactful industrial solutions. 🌍🔋 These honors underscore his ability to bridge academic research and practical applications, driving progress in sustainable energy technologies and functional composite materials.

Research Focus 🔍

🔬 Dr. Qiangqiang Tan’s research centers on advanced energy materials and functional composite materials, with a particular emphasis on sustainability. His work explores cutting-edge innovations in lithium-ion and sodium-ion battery cathode materials, including P2-type layered oxides and polyanion-type structures. 🔋💡 He also focuses on scalable solid electrolytes for next-generation batteries, aiming to enhance energy efficiency and reduce environmental impact. 🌍✨ Dr. Tan’s research integrates pilot-scale development and industrialization, ensuring seamless translation from laboratory discoveries to practical applications. He has successfully led the establishment of state-of-the-art production lines and platforms, pushing the boundaries of sustainable materials science. His work contributes to the global transition to cleaner energy solutions, making a tangible impact on energy storage technologies. 🌱🔧

 

Conclusion ✅

Dr. Qiangqiang Tan is exceptionally well-suited for the Outstanding Contribution Award. His blend of research excellence, industrial leadership, and innovation aligns perfectly with the award’s criteria. Addressing the suggested areas for improvement could enhance his already stellar portfolio and maximize his contributions to the scientific community.

📚Publications to Noted

 

Realizing the high stability of P2-type layered cathode materials for sodium-ion batteries based on the diagonal rule strategy
Authors: C. Wu, Chen; Y. Xu, Yuxing; J. Song, Jiechen; A. Wei, Aijia; Q. Tan, Qiangqiang
Journal: Materials Today Energy
Year: 2025

Research progress on P2-type layered oxide cathode materials for sodium-ion batteries
Authors: C. Wu, Chen; Y. Xu, Yuxing; J. Song, Jiechen; A. Wei, Aijia; Q. Tan, Qiangqiang
Citations: 6

Preparation and Performance Investigation of Carbon-Coated Li1.2Mn0.2Ti0.6O2/C Cathode Materials
Authors: Y. Zhou, Yuncheng; Y. Xu, Yuxing; J. Song, Jiechen; Q. Tan, Qiangqiang
Journal: ACS Applied Materials and Interfaces
Year: 2024

Enabling a scalable composite solid electrolyte via cathode-supported scale-up processing
Authors: J. Song, Jiechen; Y. Xu, Yuxing; Y. Zhou, Yuncheng; A. Wei, Aijia; Q. Tan, Qiangqiang
Journal: Journal of Materials Chemistry A
Year: 2024

Revealing the effect of double bond-modified Li6.75La3Zr1.75Ta0.25O12 on the Li-ion conduction of composite solid electrolytes
Authors: J. Song, Jiechen; Y. Xu, Yuxing; Y. Zhou, Yuncheng; A. Wei, Aijia; Q. Tan, Qiangqiang
Journal: Materials Today Energy
Year: 2024
Citations: 4

The Y3+ and W6+ co-doping into Ni-rich Co-free single-crystal cathode LiNi0.9Mn0.1O2 for achieving high electrochemical properties in lithium-ion batteries
Authors: H. Feng, Hailan; Y. Xu, Yuxing; Y. Zhou, Yuncheng; J. Yang, Jun; Q. Tan, Qiangqiang
Journal: Journal of Alloys and Compounds
Year: 2024
Citations: 6

Directional and Orderly Arranged Ni0.9Mn0.1(OH)2 Enables the Synthesis of Single-Crystal Ni-Rich Co-Free LiNi0.9Mn0.1O2 with Enhanced Internal Structural Stability
Authors: H. Feng, Hailan; Y. Xu, Yuxing; Y. Zhou, Yuncheng; J. Song, Jiechen; Q. Tan, Qiangqiang
Journal: ACS Omega
Year: 2024
Citations: 2

Effect of surface structure on electrochemical properties in Li1.2Ni0.2Ti0.6O2 cathode material
Authors: Y. Zhou, Yuncheng; Y. Xu, Yuxing; H. Feng, Hailan; F. Zhuge, Fuchang; Q. Tan, Qiangqiang
Journal: Journal of Materials Science
Year: 2023

Changjun Chen | Functional Materials | Best Researcher Award

Prof. Dr. Changjun Chen | Functional Materials | Best Researcher Award

Director at Soochow University, China

Prof. Changjun Chen is a distinguished researcher in laser materials processing and an expert in laser-assisted material removal, shaping, and surface modification. Currently a professor at Soochow University’s Laser Processing Research Center, he also serves as Secretary General of the Laser Industry Alliance of G60 S&T Innovation Valley of the Yangtze River and Jiangsu Province Laser Innovation. His research group focuses on understanding process-material interactions to enhance quality and productivity. Prof. Chen has published over 200 peer-reviewed papers, with more than 100 indexed in SCI, and holds over 30 patents. With international recognition, he serves on the editorial board of the Journal of Materials Engineering and Performance and is a member of IEEE and ISO. His contributions have significantly advanced laser welding, laser metal deposition, and laser-induced shaping, making a remarkable impact on aerospace, automotive, and energy industries. 🚀🔬

Professional Profiles📖🌎

Scopus

Orcid

Education 🎓

🎓 Prof. Changjun Chen obtained his BE degree in 2000 from Northeastern University, Shenyang, China, specializing in materials science. He later pursued a PhD at the Institute of Metal Research, Chinese Academy of Sciences, completing it in 2007. 📖 His doctoral research focused on advanced materials processing techniques. Following his PhD, he embarked on an academic journey at Wuhan University of Science and Technology, where he served as an associate professor from 2007 to 2011. In 2011, he earned the title of professor and transitioned to Soochow University, Suzhou. 🌍 In 2013-2014, Prof. Chen expanded his expertise internationally as a visiting scholar at Columbia University, New York, supported by the China Scholarship Council. His educational journey reflects a strong foundation in materials science and laser processing technologies. 📡🔬

Work Experience💼

🔹 2007-2011: Associate Professor, Wuhan University of Science and Technology 📌 🔹 2011-Present: Professor, Soochow University 📍 🔹 2013-2014: Visiting Scholar, Columbia University, New York 🌎 🔹 Secretary General, Laser Industry Alliance of G60 S&T Innovation Valley 🏆 🔹 Secretary General, Jiangsu Province Laser Innovation ⚙️ 🔹 International Editorial Board Member, Journal of Materials Engineering and Performance 📖 🔹 IEEE & ISO Member 📡 His career spans significant contributions to laser processing, industrial applications, and academic leadership. He has played a pivotal role in advancing laser manufacturing and materials science. ⚡

Research Focus 🔍

Prof. Chen’s research aims to understand the physics of process-material interactions for quality and productivity improvements. His key research areas include: 🔹 Laser metal deposition for superalloy and high-strength steel ⚙️ 🔹 Laser-forming of metallic foam for aerospace & automotive applications 🚗✈️ 🔹 Laser-induced temperature gradient shaping techniques 🌡️ 🔹 Fabrication of foam steel via laser metal deposition 🔩 🔹 Laser cladding of superalloy for gas turbines 🔥 🔹 Laser welding and sealing of glass to metal/alloy 🛠️ His work significantly impacts aerospace, automotive, and energy industries. 🌍

Conclusion ✅

Prof. Changjun Chen‘s exceptional contributions to laser processing research, combined with his leadership, patents, and academic influence, make him a strong candidate for the Best Researcher Award 🏆. With a proven track record in high-impact publications, industrial applications, and scientific leadership, his work has significantly shaped the field. Addressing minor areas of improvement, such as expanding global collaborations and industrial commercialization, could further strengthen his candidacy.

📚Publications to Noted

 

Effect of composite adding Ta and Mo on microstructure and properties of W-Mo-Cr high-speed steel prepared by laser metal deposition

Authors: Min Zhang, Changjun Chen, Liangxin Hong

Year: 2025

Preparation Process of WC Wear-Resistant Coating on Titanium Alloys Using Electro-Spark Deposition

Authors: Haodong Liu, Liuqing Huang, Dongsheng Wang, Changjun Chen, Aiyong Cui, Shikang Dong, Zhiwei Duan

Year: 2025

Effect of High-Temperature Oxidation on Laser Transmission Welding of High Borosilicate Glass and TC4 Titanium Alloy

Authors: Mengxuan Xu, Changjun Chen, Jiaqi Shao, Chen Tian, Min Zhang, Wei Zhang

Year: 2025

Ultrasonic Processing Across Different Phases in Laser Welding of Large Thin-Walled Structures

Authors: Haodong Liu, Dongsheng Wang, Changjun Chen, Aiyong Cui, Bing Wang, Li Han

Year: 2025

Comparative Study of the Effects of Different Surface States During the Laser Sealing of 304 Steel/High-Alumina Glass

Authors: Changjun Chen, Bei Bao, Jiaqi Shao, Min Zhang, Haodong Liu

Year: 2025

Effects of Different Surface Treatment Methods on Laser Welding of Aluminum Alloy and Glass

Authors: Changjun Chen, Lei Li, Min Zhang, Wei Zhang

Year: 2024

Wetting and Sealing of the Interface Between High-Alumina Glass and 304 Stainless Steel

Authors: Liwei Sui, Changjun Chen, Min Zhang

Year: 2024

Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass

Authors: Changjun Chen, Lei Li, Min Zhang, Mengxuan Xu, Wei Zhang

Year: 2024

Efects of Different Oxidation Methods on the Wetting and Diffusion Characteristics of a High-Alumina Glass Sealant on 304 Stainless Steel

Athors: Changjun Chen, Liwei Sui, Min Zhang

Year: 2024

Design of Maraging Steel with Aluminum by Laser Metal Deposition

Authors: Chen Gao, Linjun Jiang, Min Zhang

Year: 2023