Jei Pil Wang | Extraction of Rare Earth Elements | Editorial Board Member

Prof. Jei Pil Wang | Extraction of Rare Earth Elements | Editorial Board Member

Professor at Pukyong National University | South Korea

Professor Jei-Pil Wang is a highly accomplished researcher in metallurgical engineering, recognized for his strong contributions to extractive metallurgy, chemical metallurgy, powder fabrication, and sustainable recycling processes. His scholarly influence is evident through 781 citations, 126 published documents, and an h-index of 13 in Scopus, reflecting a career marked by steady research productivity and global academic engagement. His work advances key areas such as metallurgical reaction mechanisms, thermochemical behavior, and process optimization, offering important insights into improving metal extraction routes and developing efficient powder fabrication methods. A significant portion of his research focuses on environmentally conscious recycling technologies, aligning with modern demands for resource sustainability and industrial waste reduction. His publications demonstrate a balanced integration of experimental rigor, analytical interpretation, and practical applicability, making his research valuable both to academia and industry. Professor Wang’s studies often bridge theoretical metallurgical principles with real-world processing challenges, contributing to technological advancements that enhance operational efficiency and environmental compliance. His body of work reflects a commitment to scientific clarity, methodological precision, and research relevance-qualities that are essential for maintaining editorial standards in high-quality journals. His ability to evaluate complex metallurgical problems, combined with a demonstrated record of producing impactful, peer-reviewed research, positions him strongly for responsibilities such as manuscript assessment, publication guidance, and strategic editorial decision-making. Given his experience, citation strength, and multidisciplinary research alignment, he is highly suitable for serving as an Editorial Board Member in journals focused on metallurgy, materials science, and sustainable metallurgical process development.

Profiles : Scopus | ORCID

Featured Publications

Urtnasan, E., Kim, C.-J., Chung, Y.-J., & Wang, J.-P. (2025). Selective recovery of rare earth elements from electric motors in end-of-life vehicles via copper slag for sustainability. Processes.

Lee, H., & Wang, J.-P. (2025). Design and implementation of a fire-responsive cooling–suppression integrated system for mitigating fire risks in data-center GPU servers. International Journal of Innovative Research and Scientific Studies.

Yeo, Y.-H., & Wang, J.-P. (2025). A study on freezing technology for the safe storage and transportation of spent lithium-ion batteries. International Journal of Innovative Research and Scientific Studies.

Jung, S.-H., Jung, J.-M., & Wang, J.-P. (2025). Development of a discharge-free pre-treatment device for spent lithium-ion batteries under an inert atmosphere. International Journal of Innovative Research and Scientific Studies.

Park, Y. S., & Wang, J.-P. (2025). Effect of metal borides on the hardness and wear of STD11 steel. International Journal of Innovative Research and Scientific Studies.

 

Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Dr. Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Project Associate at National Institute of Technology Agartala | India

Dr. Dipankar Dey is a mechanical engineer specializing in advanced materials and tribology, recognized for his impactful studies on aluminum matrix composites reinforced with ceramic and recycled particles. His body of work, comprising 18 publications indexed in Scopus with 493 citations and an h-index of 15, addresses key challenges in the enhancement of wear resistance and mechanical integrity of lightweight metal composites. His research integrates experimental techniques and statistical optimization tools such as the grey-Taguchi and grey-fuzzy approaches to investigate friction, wear, and strength under diverse process parameters. Through extensive work on Al2024, Al7075, and other alloys, he has elucidated the role of TiB₂ and SiC reinforcement in improving tribological and structural characteristics, supporting applications in aerospace and automotive sectors. His recent studies on composites enhanced with recycled borosilicate glass align with sustainable engineering practices by reducing waste and resource consumption. Publishing in internationally reputed SCI journals, he has contributed novel methodologies for materials characterization and property optimization. Dr. Dey’s scholarly focus bridges experimental mechanics and environmental consciousness, advancing the frontiers of materials engineering and supporting industrial innovations for next-generation composite technologies.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Bhowmik, A., Dey, D., & Biswas, A. (2021). Comparative study of microstructure, physical and mechanical characterization of SiC/TiB₂ reinforced aluminium matrix composite. Silicon, 13(6), 2003–2010. Cited by: 99

Dey, D., Bhowmik, A., & Biswas, A. (2022). Effect of SiC content on mechanical and tribological properties of Al2024–SiC composites. Silicon, 14(1), 1–11. Cited by: 82

Bhowmik, A., Dey, D., & Biswas, A. (2022). Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB₂ dispersed aluminium matrix composite. Silicon, 14(3), 1133–1146. Cited by: 46

Dey, D., & Biswas, A. (2021). Comparative study of physical, mechanical and tribological properties of Al2024 alloy and SiC–TiB₂ composites. Silicon, 13(6), 1895–1906. Cited by: 42

Bhowmik, A., Dey, D., & Biswas, A. (2020). Tribological behaviour of aluminium–titanium diboride (Al7075–TiB₂) metal matrix composites prepared by stir casting process. Materials Today: Proceedings, 26, 2000–2004. Cited by: 42

Jingshi Zhang | Kinetics in Steelmaking | Best Researcher Award

Dr. Jingshi Zhang | Kinetics in Steelmaking | Best Researcher Award

Lecturer at Changchun University of Technology | China

Dr. Jingshi Zhang is a dedicated metallurgical researcher and lecturer at Changchun University of Technology, recognized for his innovative work in steelmaking reaction kinetics and metal matrix composites. Trained under Prof. Miaoyong Zhu at Northeastern University, he has developed a strong foundation in computational modeling, materials behavior, and laser additive manufacturing. His publication record includes 12 papers, among which several are in high-impact journals such as Metallurgical and Materials Transactions B and Journal of Alloys and Compounds. His Scopus profile lists 6 documents, 1 citation, and an h-index of 1, illustrating his growing academic influence. Dr. Zhang has made significant advances in developing nano-TiB₂/AlSi10Mg composites using selective laser melting and constructing a metallurgical transport and reaction model to optimize dephosphorization processes in converters. His work contributes to improved understanding of microstructural strengthening mechanisms and process efficiency in metallurgical systems. With four patents filed, he demonstrates a strong focus on applied research and innovation. His collaborations, notably with Hong Kong City University, underscore his international engagement and commitment to advancing metallurgical process technology. Dr. Zhang’s scientific contributions and interdisciplinary research approach make him a strong candidate for the Best Researcher Award.

Profile : Scopus | ORCID

Featured Publications

Dai, J., Zhang, J., Fu, L., Zou, H., Zhu, W., Han, Y., & Ran, X. (2025). Control of microstructure and mechanical properties of nano-TiB₂ modified AlSi10Mg alloy by selective laser melting. Journal of Alloys and Compounds.

Wang, Z., Fu, L., Yang, Y., Zhang, J., Han, Y., & Ran, X. (2025). Selective Laser Melting of a Fe–Cr–Ni–Al–Mo Precipitation Hardening Stainless Steel: Process Parameter Optimization and Control of Microstructure and Properties. Steel Research International.

Zhang, J., Lou, W., & Zhu, M. (2023). Numerical Simulation of Particle Motion and Wall Scouring Behavior in Steelmaking Converter With Bottom Powder Injection. Metallurgical and Materials Transactions B, 54(12).

Zhang, J., Lou, W., & Zhu, M. (2023). Numerical Simulation of Particle Transport Phenomenon in Steelmaking Converter With Bottom Powder Injection Based on Eulerian-Multifluid VOF-Granular Flow Model. Metallurgical and Materials Transactions B, 54(6).

Zhang, J., Lou, W., Shao, P., & Zhu, M. (2022). Mathematical Simulation of Impact Cavity and Gas–Liquid Two-Phase Flow in Top–Bottom Blown Converter with Eulerian-Multifluid VOF Model. Metallurgical and Materials Transactions B, 53(12).

Qian Li | Minerals Engineering | Pioneer Researcher Award

Prof. Qian Li | Minerals Engineering | Pioneer Researcher Award

Professor at University of South China | China

Prof. Qian Li, a distinguished scholar in biohydrometallurgy at the University of South China, has made exceptional contributions to understanding microbial processes in mineral engineering, particularly uranium bioleaching and residue stabilization. His research integrates microbiological mechanisms with mineral system engineering to address challenges in uranium extraction and environmental remediation. He has directed numerous national and provincial research projects focused on the behavior of iron/sulfur-oxidizing bacterial consortia, in-situ passivation of uranium residues, and eco-friendly leaching technologies. Prof. Li’s innovative studies on biogenic coatings, microbial oxidation, and nanobubble-assisted leaching have introduced new approaches to sustainable metal recovery and waste control. His extensive publication record exceeds 80 research articles in reputed journals including Journal of Hazardous Materials, Frontiers in Microbiology, and Journal of Cleaner Production, showcasing his interdisciplinary expertise and technical leadership. As documented in his Scopus profile, he has accumulated over 4,651 citations, 289 indexed documents, and an h-index of 39, underscoring his scientific impact and recognition within the international minerals engineering community. Through his pioneering work on microbial-mineral interactions, Prof. Li continues to advance the field toward cleaner and more efficient resource utilization, establishing himself as a leading figure in metallurgical and environmental biotechnology.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Li, S., Xiao, L., Sun, J., Li, Q., Li, G., Cui, Z., Li, T., & Zhou, X. (2025). Biogenic jarosite coating as an innovative passivator for acidic uranium residue stabilization using Acidithiobacillus ferrooxidans. Journal of Hazardous Materials, 471, 140229. DOI: 10.1016/j.jhazmat.2025.140229

Xiao, L., Li, S., Liu, X., Sun, J., Li, G., Cui, Z., Li, T., & Li, Q. (2024). Linked variations of bioleaching performance, extracellular polymeric substances (EPS) and passivation layer in the uranium bacterial-leaching system. Journal of Radioanalytical and Nuclear Chemistry, 334, 637–651. DOI: 10.1007/s10967-024-09851-6

Li, Q., Liu, X., Ma, J., Sun, J., Li, G., Cui, Z., & Li, T. (2023). Bidirectional effects of sulfur-oxidizer Acidithiobacillus thiooxidans in uranium bioleaching systems with or without sulfur by mixed acidophilic bacteria. Journal of Radioanalytical and Nuclear Chemistry, 332, 1787–1794. DOI: 10.1007/s10967-023-08841-4

Sun, J., Ma, J., Li, Q., Li, G., Shi, W., Yang, Y., Hu, P., & Guo, Z. (2022). Role of Fe/S ratios in the enhancement of uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium. Journal of Central South University, 29(12), 3858–3869. DOI: 10.1007/s11771-022-5216-1

Yang, Y., Li, Q., Li, G., Ma, J., Sun, J., Liu, X., Cui, Z., & Li, T. (2022). Depth-induced deviation of column bioleaching for uranium embedded in granite porphyry by defined mixed acidophilic bacteria. Journal of Radioanalytical and Nuclear Chemistry, 331, 3681–3692. DOI: 10.1007/s10967-022-08418-7

Chen, Z., Li, Q., Yang, Y., Sun, J., Li, G., Liu, X., Shu, S., Li, X., & Liao, H. (2022). Uranium removal from a radioactive contaminated soil by defined bioleaching bacteria. Journal of Radioanalytical and Nuclear Chemistry, 331, 439–449. DOI: 10.1007/s10967-021-08077-0

Abid Hussain | Shape Memory Alloys | Best Researcher Award

Dr. Abid Hussain | Shape Memory Alloys | Best Researcher Award

Lab Engineer at University of Engineering and Technology, Peshawar | Pakistan

Dr. Abid Hussain is a mechanical and materials engineer recognized for his multidisciplinary research in advanced alloys, renewable energy technologies, and computational modeling. His studies focus on the development and enhancement of TiNiPdCu-based shape memory alloys produced via powder metallurgy, targeting high-temperature applications in energy and aerospace systems. He has also explored solar-driven water purification, Stirling engine design, and absorption cooling systems that integrate sustainable energy sources. Dr. Hussain’s research extends into computational fluid dynamics and structural analysis, emphasizing the mechanical performance of engineered systems under diverse environmental and seismic conditions. His publication record reflects a strong commitment to materials innovation, energy efficiency, and environmental sustainability. With 69 citations, 9 indexed documents, and an h-index of 5 in Scopus, Dr. Hussain continues to contribute impactful knowledge that advances metallurgical and mechanical engineering frontiers globally.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Manzoor, F., Wei, L., Hussain, A., Asif, M., & Shah, S. I. A. (2019). Patient satisfaction with health care services: An application of physician’s behavior as a moderator. International Journal of Environmental Research and Public Health, 16(18), 3318. Cited by 649 documents.

Klein Tank, A. M. G., Peterson, T. C., Quadir, D. A., Dorji, S., Zou, X., Tang, H., … Hussain, A. (2006). Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research: Atmospheres, 111(D16). Cited by 630 documents.

Qing, M., Asif, M., Hussain, A., & Jameel, A. (2020). Exploring the impact of ethical leadership on job satisfaction and organizational commitment in public sector organizations: The mediating role of psychological empowerment. Review of Managerial Science, 14(6), 1405–1432. Cited by 515 documents.

Cheema, M. A., Malik, M. A., Hussain, A., Shah, S. H., & Basra, S. M. A. (2001). Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus L.). Journal of Agronomy and Crop Science, 186(2), 103–110. Cited by 308 documents.

Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., & … (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. Cited by 306 documents.

Qi Shi | Refractory Metals | Best Researcher Award

Qi Shi | Refractory metals | Best Researcher Award

Senior Engineer at Ningbo University of Technology | China

Assoc. Prof. Dr. Qi Shi is a distinguished researcher in materials science with a Ph.D. in Materials Science and Technology from Loughborough University, UK. Since returning to China, he has focused on the R&D of near-net-shape technologies, including advanced metal powders, powder metallurgy, and additive manufacturing. His pioneering work in radio-frequency (RF) plasma spheroidization of refractory metals has achieved breakthroughs in stable feeding technology for ultrafine powders, enabling consistent feeding and effective dispersion of low-density powders. He has also developed ultrasonic-fluidized bed wet classification methods for efficient micro-nano powder separation, leading to the production and commercialization of low-oxygen tantalum powder, ultrafine tungsten powder, and ultra-high hardness cast tungsten carbide powder. His research extends to metal additive manufacturing and post-processing, where he has advanced powder suitability evaluation and clarified the role of powder characteristics in selective laser melting (SLM). Through hot isostatic pressing and high-pressure heat treatment, he has enhanced strength–toughness synergy and significantly improved high-cycle fatigue performance in stainless steel, tantalum, and tungsten. Qi Shi has led five major government-funded projects, securing over RMB three million, and contributed to more than ten additional national and regional initiatives. He has published 35 academic papers in prestigious journals such as Additive Manufacturing, Materials Science and Engineering: A, and Journal of Materials Research and Technology, including 15 as first or corresponding author. According to his Scopus profile, he has more than 356 citations and an h-index of 13. He has also applied for 21 patents (15 granted), contributed to national standards, authored professional books, and received multiple awards, including the China Nonferrous Metals Industry Science and Technology Award (Second Prize) and the National Technical Standard Excellence Award (First Prize).

Profile: Scopus

Featured Publications

Shi, Q., Li, D., Du, W., Wu, A., & others. (2024). Improved mechanical properties and thermal conductivity of laser powder bed fused tungsten by using hot isostatic pressing. Cited by: 2

Pu, Y., Zhao, D., Liu, B., Shi, Q., & others. (2024). Microstructure evolution and mechanical properties of Ti-25Ta alloy fabricated by selective laser melting and hot isostatic pressing. Cited by: 1

Xu, J., Chen, H., Shi, Q., Liu, X., & others. (2024). Interdiffusion mechanism of hybrid interfacial layers for enhanced electrical resistivity and ultralow loss in Fe-based nanocrystalline soft magnetic composites. Cited by: 3

Qin, F., Shi, Q., Zhou, G., Wen, J., & others. (2024). Simultaneously enhanced strength and plasticity of laser powder bed fused tantalum by hot isostatic pressing. Cited by: 2

Qin, F., Shi, Q., Zhou, G., Yao, D., & others. (2023). Influence of powder particle size distribution on microstructure and mechanical properties of 17-4 PH stainless steel fabricated by selective laser melting. Cited by: 14

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Doctor at China Jiliang University | China

Dr. Chen Xu is an Assistant Research Fellow at China Jiliang University specializing in the metallurgy and materials science of magnesium, aluminum, titanium, and copper alloys. He earned his Ph.D. in Materials Science and Engineering from Zhengzhou University, following an M.D. in Metallurgical Engineering from Lanzhou University of Technology and a B.A. in Metallurgical Engineering from Lanzhou College of Information Science and Technology. His research spans melting processes, microstructure, heat treatment, deformation treatment, corrosion resistance, coatings, martensitic transformations, and first-principles calculations. Dr. Xu has contributed to several national research projects, including those funded by the National Natural Science Foundation of China, and has authored multiple peer-reviewed publications in high-impact journals such as Materials & Design, Journal of Magnesium and Alloys, Materials Science & Engineering A, and Journal of Alloys and Compounds. His recent works cover topics like heat treatment effects on Mg-Sc alloys, martensitic transformation behavior, micro-galvanic corrosion, and advanced aluminum-titanium-carbon master alloys. He has also published research on the optimization of aluminum alloys and collaborated on interdisciplinary studies involving carbon quantum dots for cancer therapy. With a 7 Scopus-indexed publications citation count of 67 and an h-index of 4 on Scopus, his profile is at an early stage of international recognition, supported by active involvement in national projects, editorial board membership with Modern Chemical Research, and patent applications. Chen Xu’s contributions demonstrate a clear trajectory toward impactful innovations in advanced materials engineering, combining experimental studies with computational insights to advance alloy design and performance.

Profile: Scopus | ORCID

Featured Publicationns

Xu, C., Liu, S., Wang, J., & Li, H. (2023). Initial micro-galvanic corrosion behavior between Mg₂Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation. Journal of Magnesium and Alloys, 11(3), 958–965. Cited by: 21

Xu, C. (2023). Martensitic transformation behavior during tensile testing at room temperature in β-type Mg-35 wt%Sc alloy. Materials Science & Engineering A, 865, 144602. Cited by: 7

Xu, C. (2023). Effect of quenching temperature on microstructure and mechanical properties of Mg-35 wt%Sc alloy. Journal of Alloys and Compounds, 943, 169165. Cited by: 5

Xu, C. (2019). Preparation and synthesis thermokinetics of novel Al-Ti-C-La composite master alloys. Journal of Alloys and Compounds, 776, 904–911. Cited by: 43

Xu, C. (2017). Effect of Al-5Ti-0.62C-0.2Ce master alloy on the microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy. Metals, 7(6), 227. Cited by: 52

Raghukumar Bommenahalli | Mechanical Metallurgy | Best Researcher Award

Raghukumar Bommenahalli | Mechanical Metallurgy | Best Researcher Award

Prinicipal Engineer at DEKRA Certification, Inc. | United States

Mr. Raghukumar Bommenahalli is a seasoned mechanical engineer with over two decades of industrial experience specializing in zero-emission transportation and energy infrastructure. Currently serving as Principal Engineer at DEKRA Certification Inc., he leads the Vehicle Innovation Grid Lab (ViGIL) and ADAS Data Collection Program, advancing California’s clean transportation initiatives through rigorous EV and EVSE testing, standards compliance, and interoperability validation. Prior to this, he was Program Manager for Codes and Standards at Nikola Motor Corporation, where he guided regulatory compliance and standards development for battery-electric and fuel-cell electric vehicles, including cybersecurity frameworks and ADAS integration for heavy-duty trucks. His earlier role at Cummins Inc. as Codes and Standards Compliance Leader saw him authoring 40+ validation plans across UL, CSA, IEC, and EN standards while pioneering hydrogen fuel cell and BEV compliance programs. Raghukumar has also contributed to major engineering projects in roles with TAAL Technologies, Creative Synergies Group, Toyo Denki Power Systems, and Cummins Generator Technologies. He is actively involved in global standards development as a voting member on multiple SAE task forces and as Co-Chair of the CharIN NACI Task Force. With a strong academic foundation that includes an Executive Master’s in Engineering Management from St. Cloud State University, a Master’s in Machine Design, and a Bachelor’s in Mechanical Engineering from Visvesvaraya Technological University, he complements his technical expertise with certifications such as PMP, DFSS, and internal auditing. In addition to his leadership in compliance, testing, and certification, he contributes as a peer reviewer for leading journals, organizes technical conferences, and holds a registered design patent in EV charging efficiency.

Pofile: Scopus | ORCID

Featured Publication

Bommenahalli, R. (2025). Effect of nickel on the mechanical properties of spray-formed Al-15Si-2Cu alloy at elevated temperatures. Journal of Alloys and Compounds.

Bommenahalli, R. (2025). Computing device for enhancing charging efficiency in electric vehicle [Patent]. UK Intellectual Property Office.

Bommenahalli, R. (2025). Fuel cell Class 8 trucks: Pioneering the path to sustainable heavy transportation. Website article.

Bommenahalli, R. (2025). Navigating the future: Innovations reshaping the EV charging landscape. International Business Times.

Zewen Li | Nickel Slag | Best Researcher Award

Mr. Zewen Li | Nickel Slag | Best Researcher Award

Xi’an University of Architecture and Technology | China

Mr. Zewen Li is a dedicated researcher at Xi’an University of Architecture and Technology, specializing in sustainable metallurgical processes. His work focuses on the resource utilization of metallurgical solid waste, particularly in the reductive recovery and diversified application of nickel slag. With a strong passion for green metallurgy, Zewen has contributed to advancing environmentally friendly approaches to metal recovery while exploring new uses for industrial by-products. His academic endeavors include authoring impactful publications, such as a review in Minerals Engineering that highlights the extraction of valuable metals and the potential of nickel slag in various material applications. Zewen is committed to integrating scientific research with industrial practice to promote circular economy principles and reduce environmental impact. As a young professional, he strives to advance metallurgical innovation, aiming to develop cleaner, safer, and more efficient technologies for the sustainable management of critical resources.

Professional Profile

Scopus

Education

Mr. Zewen Li pursued his higher education at Xi’an University of Architecture and Technology, where he developed a strong foundation in metallurgical engineering. His academic training emphasized the theoretical and applied aspects of metallurgy, with particular attention to solid waste resource recovery and sustainable metal extraction. During his studies, he actively engaged in research projects centered on the utilization of nickel slag, gaining expertise in analyzing its physical and chemical properties, as well as its potential for industrial reuse. His education provided him with a deep understanding of chemical thermodynamics, extractive metallurgy, and material characterization techniques. Through rigorous coursework, laboratory work, and collaborative projects, Zewen honed his ability to integrate scientific knowledge with practical industrial applications. This educational background not only equipped him with specialized knowledge in non-ferrous metallurgy but also cultivated his research-oriented mindset, enabling him to contribute meaningfully to the growing field of sustainable metallurgical processes.

Experience

Mr. Zewen Li’s professional and research experience has centered on the efficient recovery and sustainable utilization of metallurgical solid waste, with a strong focus on nickel slag. At Xi’an University of Architecture and Technology, he has undertaken significant research projects, including his notable publication “Diversified Utilization of Nickel Slag: A Review” in Minerals Engineering. His work systematically analyzed methods of extracting valuable metals such as iron, nickel, cobalt, and copper from nickel slag and investigated applications in gelling materials, glass ceramics, and material-related industries. Beyond laboratory research, Zewen has contributed to understanding the broader implications of waste valorization in metallurgical industries by reviewing and proposing strategies for combining nickel slag recovery with battery recycling and secondary waste management. His experience reflects both technical expertise and innovative thinking in sustainable metallurgy. This professional trajectory highlights his commitment to addressing environmental challenges and developing efficient, eco-friendly solutions for industrial waste management.

Research Focus

Mr. Zewen Li’s research is primarily focused on the sustainable utilization of metallurgical solid waste, with particular emphasis on nickel slag. His work aims to explore the dual goals of resource recovery and environmental protection by investigating eco-friendly processes for extracting valuable metals such as Fe, Ni, Co, and Cu. He is also deeply interested in the potential applications of nickel slag in materials science, including its use in gelling agents, glass ceramics, and construction materials. His studies address both the theoretical mechanisms, including leaching, weathering process strengthening, and solvent extraction, and the practical industrial feasibility of these methods. Additionally, he considers the integration of nickel slag recycling with other waste management systems, such as battery recycling and secondary waste utilization, thereby contributing to broader strategies of sustainable resource management. His research reflects a holistic view of metallurgy, balancing technological innovation with environmental responsibility to promote circular economy practices.

Publication top Notes

Title: Diversified Utilization of Nickel Slag: A Review

Year: 2025

Conclusion

Mr. Zewen Li’s research demonstrates a commendable commitment to addressing pressing environmental and industrial challenges through sustainable metallurgical practices. His focused work on the comprehensive utilization of nickel slag reflects both academic insight and awareness of real-world applications. While his current achievements illustrate strong potential and emerging expertise, the scope and maturity of his portfolio are still developing. For the Best Researcher Award, which typically honors individuals with a sustained record of impactful innovations and broader academic leadership, further scholarly contributions and practical implementations would enhance his competitiveness. Nonetheless, his trajectory indicates significant promise, and he stands out as a valuable contributor to the next generation of metallurgical researchers, well-suited for early-career recognition and future leadership in the field.

Zhe Wang | Metallurgical Engineering | Best Researcher Award

Prof. Dr. Zhe Wang | Metallurgical Engineering | Best Researcher Award

Professor at University of Science and Technology Beijing, China

Zhe Wang is a professor at the University of Science and Technology Beijing. His academic journey, marked by extensive research in metallurgical engineering, began with a Ph.D. from the University of Wollongong, Australia. Since 2016, he has been a dedicated contributor to advancing recycling technologies for critical metals. With a focus on innovative solutions to supply security risks and environmental challenges, Dr. Wang’s work has significantly impacted industrial practices. His methods, such as supergravity-enhanced separation and matte smelting for lithium-ion batteries, are transformative, earning recognition from prestigious organizations. A prolific author and inventor, he holds multiple patents and has published over 43 SCI-indexed papers. His leadership extends to editorial roles and professional committees, fostering collaboration in the metallurgical community.

Professional Profiles📖

Scopus

Education 🎓

Dr. Wang’s educational foundation is deeply rooted in metallurgical engineering. He earned his doctoral degree (2012-2015) from the University of Wollongong, where he delved into innovative recycling methods for metal resources. His Ph.D. thesis focused on the molten separation of metals and related electrochemical processes. Prior to that, he pursued foundational studies in materials science, developing a profound understanding of alloy behaviors and high-temperature reactions. His academic pursuits emphasized practical applications, paving the way for his later industrial collaborations. This strong theoretical grounding underpins his current research, as he continues to educate future leaders in metallurgy at the University of Science and Technology Beijing.

Work Experience💼

Dr. Wang‘s professional career spans over a decade of impactful contributions to metallurgical research and education. From his initial role as an Associate Research Fellow at the University of Wollongong, he transitioned to teaching and research positions at the University of Science and Technology Beijing. Serving as a Lecturer (2016–2018), Associate Professor (2018–2024), and now as Professor, he has led numerous projects funded by national foundations and industry partners. His work bridges academia and industry, driving innovation in metal recycling technologies. His hands-on approach to research has resulted in industrial implementations with significant cost and efficiency benefits.

Research Focus

Dr. Wang specializes in high-value recycling of critical metal resources, tackling challenges in supply chain security and sustainability. His pioneering approaches, including supergravity-assisted separation and electrochemical methods, emphasize efficiency and scalability. His focus extends to recycling low-melting-point metals, refining titanium and zirconium through stable electrolytes, and developing smelting processes for precious metals. His research integrates theoretical insights and practical applications, bridging the gap between laboratory innovation and industrial utility.

Awards & Honors

Dr. Wang‘s achievements have been celebrated with numerous awards. Among these, the First Prize in the China Nonferrous Metals Industry Technological Invention Award (2022) stands out for his advancements in molten salt electrorefining. His contributions to supergravity-enhanced technologies have also been supported by the National Natural Science Foundation of China. As a recognized leader, he serves on editorial boards and professional committees, further solidifying his reputation as a thought leader in the field. His work’s industrial impact has earned accolades from organizations such as Baosteel and Shougang Group.

Conclusion✅

Dr. Zhe Wang exemplifies the qualities of a deserving candidate for the Best Researcher Award. His pioneering work in high-value recycling of critical metals, combined with a track record of impactful publications, patents, and industrial applications, underscores his significant contributions to science and industry. Addressing minor areas for improvement, such as increasing global collaboration and interdisciplinary engagement, could further elevate his already stellar profile. Dr. Wang’s innovative research and dedication make him a strong contender for this prestigious recognition.

📚Publications to Noted

 

Extraction and recovery of rare earth elements from NdFeB waste using bismuth reinforced by supergravity

Authors: Z. Wang, Zhenxiang Zhang, Long Meng, Chunjiang Li, Zhancheng GuCitations: 0

Year: 2024

Sustainable recycling of pure aluminum from waste chips under supergravity-enhanced separation: A cleaning process

Authors: Bolin Sun, Lei Guo, Z. Wang, Xi Lan, Zhancheng Guo

Year: 2024

Preparation of SiC/Al composite material by supergravity infiltration method and its properties

Authors: Yuan Li, Z. Wang, Zhancheng Guo

Citations: 6

Year: 2024

Grade-preserving recycling of highly polluted Al-Mg-Si alloys scrap: Continuous filtration under supergravity-induced

Authors: Bolin Sun, Xi Lan, Z. Wang, Ningjie Sun, Zhancheng Guo

Citations: 1

Year: 2024

Weak Electrostatic Force on K+ in Gel Polymer Electrolyte Realizes High Ion Transference Number for Quasi Solid-State Potassium Ion Batteries

Authors: Huize Yang, Wei Wang, Zheng Huang, Shufeng Yang, Shuqiang Jiao

Citations: 12

Year: 2024

The fundamental research on suspended dross in hot dip Al–Zn galvanising process

Authors: Rensheng Chu, Z. Wang, Ningjie Sun, Chengliang Xu, Zhancheng Guo

Year: 2024

CFD simulation and water model experiments with overflow-type supergravity reactor set up for continuously removing inclusions from aluminum melt

Authors: Z. Wang, Qilong Wei, Meng Hu, Zhancheng GuoCitations: 0

Year: 2024

Effect of Al2O3/SiO2 mass ratio and CaO content on viscosity and structure of slag for pyrometallurgical processing of spent automotive catalysts

Authors: Z. Wang, Qilong Wei, Chengbin Shi, Zhancheng Guo

Citations: 5

Year: 2024

Insight into compositional dependence of thermophysical properties and structure of Al2O3-SiO2-CaF2-CaO-Li2O melts

Authors: Xiuxiu Wan, Z. Wang, Jian Yang, Chengbin Shi

Citations: 5

Year: 2024

Review—Preparation of Hafnium Metal by Electrolysis

Authors: Ranran Wei, Zheng Huang, Tianwei Wei, Z. Wang, Shuqiang Jiao

Citations: 2

Year: 2024