Muhammad Mubeen | Anti-Corrosion | Young Scientist Award

Dr. Muhammad Mubeen | Anti-Corrosion | Young Scientist Award

University of Science and Technology of China | China

Dr. Muhammad Mubeen is a highly motivated and accomplished researcher in the field of materials science and engineering, currently pursuing his Ph.D. at the University of Science and Technology of China, following an M.S. in Materials Science and Engineering from Beijing University of Chemical Technology and a B.Sc. in Metallurgy and Materials Engineering from Bahauddin Zakariya University, Multan, Pakistan. Mubeen has made significant contributions to corrosion-resistant coatings, nanomaterials, and advanced composite materials, authoring 25 documents with a total of 620 citations and an h-index of 12 according to Scopus. His key publications include studies on anti-corrosion self-healable epoxy coatings reinforced with Guanine-MRS@MoS2 heterostructures, heterostructured melamine resin spheres@GO epoxy composites for automotive applications (Chemical Engineering Journal, 2024), and the development of automated rust detection networks for steel structures (Archives of Civil and Mechanical Engineering, 2025). Mubeen’s research experience spans the synthesis and characterization of nanomaterials, fabrication of smart coatings for Zn-Al-Mg coated steel, and exploration of Nitinol alloys for biomedical applications. He has also actively engaged in professional internships at Pepsico, Inc., and PECS Industries, contributing to engineering, supply chain, and corporate affairs projects. His accolades include the Chinese Government Scholarship, PEEF Merit-Based Scholarship, and recognition for best research posters and interuniversity leadership. In addition to research, he has volunteered with organizations such as the Edhi Foundation and Bike Angel Association of China, reflecting his commitment to societal impact and STEM outreach.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Murtaza, H., Zhao, J., Tabish, M., Wang, J., Mubeen, M., Zhang, J., & Zhang, S. (2024). Protective and flame-retardant bifunctional epoxy-based nanocomposite coating by intercomponent synergy between modified CaAl-LDH and rGO. ACS Applied Materials & Interfaces, 16(10), 13114–13131.

Mubeen, M., Zhao, J., Tabish, M., Wang, J., Mahmood, M., Murtaza, H., & Jawad, M. (2024). Heterostructured melamine resin Spheres@GO reinforced epoxy composite achieving robust corrosion-resistance of Zn-Al-Mg coated steel for automotive applications. Chemical Engineering Journal, 499, 156070.

Mahmood, M., Mubeen, M., Wang, W., Tabish, M., Murtaza, H., & Jawad, M. (2025). Mechanically robust and self-healing protective coating for Zn-Al-Mg coated steel enhanced by benzotriazole-5 carboxylic acid intercalated MgAlCe ternary LDH. Progress in Organic Coatings, 201, 109107.

Flehan, A., Jinna, L., Tabish, M., Kumar, A., Mohammed, Y. A. Y. A., & Mubeen, M. (2023). Development of anti-corrosion and hydrophobicity of a nanostructured Ce-La film via the PDA post-treatment modification. Journal of Alloys and Compounds, 968, 172139.

Khalid, S., Mubeen, M., Tabish, M., Jawad, M., Malik, M. U., Ilyas, H. M. A., & others. (2025). When low-dimensional nanomaterials meet polymers: A promising configuration for flame retardancy and corrosion protection. Chemical Engineering Journal, 515, 163678.

Vipin Kumar Sharma | Advanced Separation | Best Researcher Award

Dr. Vipin Kumar Sharma | Advanced Separation | Best Researcher Award

Research Scholar at Indian Institute Of Technology (IIT) Tirupati | India

Dr. Vipin Kumar Sharma is a dedicated and accomplished chemical engineer with a strong academic and professional background. He earned his B.Tech. and M.Tech. in Chemical Engineering with First Class Distinction from SRM University, where he was awarded a Gold Medal and an SRM University Scholarship for academic excellence. He also holds postgraduate diplomas in Health, Safety & Environment and Business Administration from Annamalai University, both with First Class Distinction. Dr. Sharma completed his Ph.D. in Chemical Engineering at the Indian Institute of Technology, Tirupati. With over 15 years of professional experience, he has made significant contributions in the fields of heavy vessel design, fertilizer, cement, and uranium processing industries. Currently, he serves as Additional Superintendent (Mill & Safety) at Uranium Corporation of India Limited under the Department of Atomic Energy, where he oversees operations, safety, and regulatory compliance with agencies such as AERB, CPCB, and BARC. His research has been published in several SCI and Scopus-indexed journals, earning accolades such as the Best Paper Award during the Platinum Jubilee Celebration of IIChE (2022), and multiple technical paper awards. He has 4 publications with 5 citations and an h-index of 2, according to his Scopus profile. Dr. Sharma is affiliated with numerous professional bodies including ASME, IEI, IAENG, IFERP, and ISHMT, and serves as an Executive Alumni Member and Board of Studies Member at SRM University and KPR Institute of Engineering and Technology.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Sharma, V. K., Namboori, V. R., Tunga, C. R., & Lankalapalli, K. (2023). Technical modification of alkali leaching circuit to improve slurry throughput into the autoclave. Chandrasekhar, L., Lankalapalli, K., & Sarkar, S. (8).

Sharma, V. K., Thamida, S. K., & Reddy, B. N. K. (2023). Carbonation and modeling study for process liquor in batch mode using flue gas in the mining and mineral processing industry. Chemical Papers, 11(4), 1–17.

Sharma, L. R. V. K. (2019). Case study of air quality at Tummalapalle Mill and effective actions for improvement. In 36th DAE Safety & Occupational Health Professional Meet organised by Nuclear… (7*).

Sharma, V. K., Thamida, S. K., & Reddy, B. N. K. (2023). Engineering study of water jacket system in place of a spiral heat exchanger at mining and mineral ore processing industry. European Chemical Bulletin, 12(7), 1507–1512.

Sharma, V. K. (2020). Effective use of LDO fired boiler flue gas in carbonation of process liquor at alkali leaching based Tummalapalle Mill. Singhania University, District Jhunjhunu, Rajasthan, India. (5).

Cheng Qian | Friction and Sealing | Best Researcher Award

Prof. Dr. Cheng Qian | Friction and Sealing | Best Researcher Award

Research Associate at Ningbo Institute of Technology, China.

🎓 Qian Cheng is a dedicated Ph.D. candidate in Mechanical Engineering at Shenyang University of Technology, under the mentorship of Dr. Shijie Wang. He specializes in advanced material design, surface engineering, and tribology. His research integrates nanotechnology, molecular simulations, and experimental validation to enhance polymer composites’ mechanical and aging properties. Qian Cheng has a multidisciplinary approach, combining engineering principles with data-driven methodologies such as machine learning 🤖. With 9 SCI-indexed papers as a first/corresponding author and ongoing cutting-edge projects, he continues to make impactful contributions in the fields of polymer science and mechanical systems 🔬⚙️. Known for his rigorous analytical skills and international academic exposure, including time spent in Germany, Cheng aims to innovate smarter, more resilient materials for modern mechanical systems 🌍🧪.

Professional Profiles📖

Scopus

ORCID

Education📚

📚 Qian Cheng’s academic journey reflects a strong foundation in mechanical and materials engineering. He began his undergraduate studies in Mechanical Design, Manufacturing, and Automation at Shenyang University of Aeronautics and Astronautics (2011–2015) ✈️🔧. He then pursued a Master’s degree (2016–2019) and is now completing a Ph.D. in Mechanical Engineering (2019–2024) at Shenyang University of Technology 🏫⚙️. During his Master’s, he was selected for an international exchange program at the University of Ahlen, Germany (2018–2019) 🇩🇪, where he specialized in polymer science 🧫. His educational path combines theoretical knowledge and hands-on experimentation with simulation-based analysis. Cheng’s passion for learning and innovation is evident in his commitment to pushing boundaries in materials science and mechanical systems development. His global perspective and interdisciplinary training empower him to tackle complex engineering challenges using both traditional and advanced tools 🌐🛠️.

Professional Experience💼

Qian Cheng has built his research experience around a comprehensive integration of simulation and experimental mechanics. He has actively contributed to research projects focusing on improving tribological behavior and thermal-oxidative aging resistance in polymer nanocomposites. During his Ph.D., Cheng designed and conducted molecular dynamics simulations to analyze the influence of nanomaterial structures on rubber composites. He also participated in lab-based experiments for materials testing and validation, bridging theory with practice. His stint at the University of Ahlen gave him hands-on experience in international research and polymer analysis. In parallel with his research, he has collaborated with fellow researchers on developing machine learning models for material property prediction. His professional trajectory is marked by academic rigor, publication success, and technical fluency, preparing him to contribute significantly to the field of mechanical and materials engineering.

Research Focus 🔍

Qian Cheng’s research 🔍 revolves around mechanical engineering, polymer nanocomposites, and material simulation. His work focuses on thermo-oxidative aging, mechanical durability, and tribological properties of rubber-based nanomaterials 🧪🛞. Using molecular dynamics simulations, he evaluates how different nanofillers—like carbon nanotubes, graphene oxide, and molybdenum disulfide—impact the performance of nitrile butadiene rubber (NBR) composites 🔄🧬. In addition, Cheng incorporates machine learning to model material behavior, enabling predictive design for future applications 🤖📊. His studies aim to improve the reliability and efficiency of components used in high-friction, high-temperature environments—critical in aerospace, automotive, and machinery sectors ✈️🚗⚙️. He also explores surface engineering and multi-scale materials research, developing systems that integrate nano-level innovation with macro-level function. His ambition is to pioneer sustainable and smart materials for next-generation mechanical equipment 🌿🔧.

Awards and Honors🏆

While specific award names are not provided, Qian Cheng’s prolific publication record in JCR Q1 and Q2 journals like Journal of Materials Research and Technology (IF=6.4), Journal of Polymer Science, and Polymer Composites indicates scholarly excellence 📚🏅. His acceptance as a visiting scholar at the University of Ahlen, Germany , reflects international academic recognition. The consistent acceptance of his work in high-impact journals suggests his research is well-regarded in the scientific community. His research outputs contribute to major areas like nanomaterials, surface modification, and tribological enhancement—critical fields within mechanical and polymer engineering. Cheng’s work has been cited and used as reference for tribological material improvement and molecular simulation techniques, showcasing his growing influence 🌟📖. He is expected to be a strong contender for future research fellowships and innovation awards in engineering science and materials research 🏆🔬.

Conclusion ✅

Cheng Qian demonstrates outstanding potential and current achievements as a researcher in advanced polymer nanocomposites and material science. His deep understanding of simulation-driven material design, backed by strong experimental work and publication output, positions him as a highly deserving candidate for the Best Researcher Award 🏆. While areas like project leadership and industry engagement can be further developed, his profile is well-rounded, ambitious, and aligned with future-ready scientific innovation.

Publications to Noted📚

Synergistic Enhancement of Mechanical and Tribological Properties of Nitrile Butadiene Rubber With RD‐Modified GO and CNTs as Antioxidants: Experiments and Molecular Dynamics Simulations

Authors: Cheng Qian; Xiaochao Liu; Wenfu Zeng; Guofeng Zhang; Rui Nie

Year: 2025

Comparative Study of the Tribological Properties of Diamond-Like Carbon and Nitride Coatings Deposited on 40Cr Surfaces

Authors: Rui Nie; Zhuobiao Li; Wenfu Zeng; Cheng Qian; Yunlong Li

Year: 2025

Comparative study on thermal-oxygen aging and tribological properties of carbon nanotubes and graphene sheet reinforced hydrogenated nitrile rubber composite materials

Authors: Qian C.; Wang S.; Li Y.; Nie R.; Song S.

Year: 2024

Design and preparation of sulfur vulcanized polyamide 66 cross-linked nitrile butadiene rubber networked and its application in blending with graphene oxide

Authors: Li X.; Li Y.; Qian C.; Wang S.; Nie R.

Year: 2024

Molecular dynamics investigation on the thermal-oxidative aging and mechanical properties of nitrile butadiene rubber composites with molybdenum disulfide

Authors: Qian C.; Chen J.; Wang S.; Wang M.; Song S.

Year: 2024

Relationship between the aging thermal oxygen and mechanical properties of nitrile butadiene rubber reinforced by RD-loaded carboxylated carbon nanotubes

Authors: Wang M.; Li Y.; Qian C.; Wang S.; Liu D.

Year: 2024

Review on stator rubber of progressive cavity pump for oil extraction,采油螺杆泵定子橡胶研究综述

Authors: Wang S.; Chen Z.; Li Y.; Qian C.; Yang B.

Year: 2024

Molecular dynamics and experimental study of mechanical and tribological properties of graphene‐reinforced nitrile butadiene rubber–phenolic resin composites

Authors: Yunlong Li; Zhiju Chen; Cheng Qian; Shijie Wang; Rui Nie

Year: 2024

A fine-tuning deep residual convolutional neural network for emotion recognition based on frequency-channel matrices representation of one-dimensional electroencephalography

Authors: Chen J.; Cui Y.; Qian C.; He E.

Year: 2023

A Study on the Relationship between the Aging Thermal Oxygen and Mechanical Properties of Nitrile Rubber Reinforced by Rd Load Carboxylated Carbon Nanotubes

Authors: Wang M.; Li Y.; Qian C.; Wang S.; Liu D.

Year: 2023