Abdellah Marzoug | Contact Mechanics | Best Researcher Award

Mr. Abdellah Marzoug | Contact Mechanics | Best Researcher Award

National Institute of Applied Sciences of Lyon | France

Mr. Abdellah Marzoug is a researcher specializing in mechanics, tribology, and multiscale modeling, with a focus on rough surface contact behavior and damage mechanisms relevant to high-performance materials and engineering systems. His work integrates theoretical modeling, numerical simulation, and experimental correlation to understand micropitting, fatigue initiation, and crack propagation in mechanical components, particularly in the context of transmission systems and surface-engineered materials. He has contributed to the advancement of analytical and computational frameworks for contact pressure prediction and roughness-induced stress fields, including his peer-reviewed publication in the International Journal of Solids and Structures (2025), which provides closed-form solutions for contact pressure distributions generated by 2D rough profiles. His research portfolio also includes contributions to structural mechanics and stress intensity modeling through conference publications and collaborative studies. He has presented his findings at internationally recognized scientific venues, such as the Leeds-Lyon Symposium on Tribology and the International Conference on Computational Contact Mechanics, reflecting growing visibility in the global research community. His research strengths lie in fatigue modeling, multiscale analysis, rough surface characterization, and constitutive modeling of materials under complex loading conditions, contributing to improved reliability, optimization, and predictive assessment of mechanical systems used in aerospace, automotive, and industrial applications.

Profile : ORCID

Featured Publications

Marzoug, A., Chaise, T., Raoult, I., Ye, W., Duval, A., & Nelias, D. (2025). Closed-form solutions for contact pressure distribution generated by 2D rough profiles. International Journal of Solids and Structures.

Delattre, B., Marzoug, A., & Villars, O. (2024). Facteurs d’intensité de contrainte dans un PSE 3D modélisé par Super-Element. Colloque National en Calcul de Structures (CSMA 2024).

Tianjie Qiu | Electrochemical Energy | Editorial Board Member

Dr. Tianjie Qiu | Electrochemical Energy | Editorial Board Member

Research Assistant at Peking University | China

Dr. Tianjie Qiu is an emerging leader in advanced materials research, distinguished by 2,075 citations, 25 Scopus-indexed publications, and an h-index of 17, reflecting strong global impact in electrocatalysis and energy storage. His work focuses on rationally engineered ruthenium-based nanocomposites derived from metal-organic frameworks, enabling highly porous structures with exceptional hydrogen and oxygen evolution activity for efficient water splitting. Through innovative alloy modulation, heterostructure formation, and confinement within B/N co-doped carbon nanotubes, he has advanced fundamental understanding of catalytic mechanisms, validated through rigorous experimental–theoretical correlation. His ESI Highly Cited Papers in leading journals such as Nano Energy, ACS Energy Letters, and Angewandte Chemie highlight the significance of his discoveries in tuning active sites, optimizing charge transport pathways, and enhancing catalytic durability. In parallel, he has made notable contributions to potassium-ion battery development by constructing nitrogen-doped microporous carbon superstructures derived from MOF precursors, elucidating adsorption energetics, multi-element doping effects, and structure-driven ion storage enhancements. His work integrates materials design, structural analysis, and electrochemical modeling to deliver high-capacity, high-rate anode systems. Additionally, his influential reviews on MOF-derived materials and graphene-based systems have served as authoritative resources for the broader research community. Dr. Qiu’s consistent high-impact outputs, cross-disciplinary expertise, and ability to bridge nanoscale design with practical energy applications establish him as a strong and deserving candidate for the Editorial Board Member.

Profiles : Scopus | Google Scholar

Featured Publications

Liang, Z., Zhao, R., Qiu, T., Zou, R., & Xu, Q. (2019). Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 1(1), 100001. (Cited by: 532)

Qiu, T., Liang, Z., Guo, W., Tabassum, H., Gao, S., & Zou, R. (2020). Metal–organic framework-based materials for energy conversion and storage. ACS Energy Letters, 5(2), 520–532. (Cited by: 488)

Wang, D. G., Qiu, T., Guo, W., Liang, Z., Tabassum, H., Xia, D., & Zou, R. (2021). Covalent organic framework-based materials for energy applications. Energy & Environmental Science, 14(2), 688–728. (Cited by: 351)

Qiu, T., Gao, S., Liang, Z., Wang, D. G., Tabassum, H., Zhong, R., & Zou, R. (2021). Pristine hollow metal–organic frameworks: Design, synthesis and application. Angewandte Chemie International Edition, 60(32), 17314–17336. (Cited by: 219)

Qiu, T., Liang, Z., Guo, W., Gao, S., Qu, C., Tabassum, H., Zhang, H., Zhu, B., & Zou, R. (2019). Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy, 58, 1–10. (Cited by: 217)

 

Zhi Zong | Computational Mechanics | Best Researcher Award

Prof. Dr. Zhi Zong | Computational Mechanics | Best Researcher Award

Professor at Fuyao University of Science and Technology | China

Prof. Dr. Zhi Zong is a leading researcher whose work integrates structural mechanics, fluid dynamics, computational modeling, and probabilistic engineering to advance the understanding of complex marine and mechanical systems. With 5,620 citations, 334 research documents, and a Scopus h-index of 38, his publications demonstrate both volume and influence within international scientific communities. His contributions include formulating high-accuracy Differential Quadrature (DQ) computational methods, such as localized, complex, and variable-order DQ techniques, which have improved the numerical simulation capabilities used in ocean engineering, ship mechanics, and structural analysis. He has made pioneering advances in uncertainty quantification, notably by identifying the variability of ship structural vibrations caused by geometric imperfections and by developing an asymptotically unbiased entropy estimator for probability distribution modeling-an outcome that has strengthened probabilistic mechanics applications. His Random Pore Model for sea ice represents an important development in capturing realistic mechanical and physical behaviors of ice, contributing to engineering design, climate studies, and environmental modeling. Beyond these theoretical achievements, Professor Zong has authored over 230 SCI-indexed papers and several specialized monographs addressing complex topics such as underwater explosion modeling, isolated water waves, and bubble dynamics. His research has been incorporated into practical marine engineering solutions and serves as a foundation for ongoing advancements in computational methods and ocean systems design. His body of work demonstrates consistent innovation, scientific rigor, and global relevance, making him a strong candidate for recognition under the Best Researcher Award.

Profiles : Scopus | Google Scholar

Featured Publications

Liu, M. B., Liu, G. R., Lam, K. Y., & Zong, Z. (2003). Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 30(2), 106–118. Cited by: 370.

Liu, M. B., Liu, G. R., Zong, Z., & Lam, K. Y. (2003). Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Computers & Fluids, 32(3), 305–322. Cited by: 324.

Zong, Z., & Zhang, Y. (2009). Advanced differential quadrature methods. Chapman and Hall/CRC. Cited by: 259.

Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., & Shu, C. (2015). An SPH model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, 283, 169–188. Cited by: 257.

Zhang, Y. Y., Wang, C. M., Duan, W. H., Xiang, Y., & Zong, Z. (2009). Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology, 20(39), 395707. Cited by: 155.

 

 

Jei Pil Wang | Extraction of Rare Earth Elements | Editorial Board Member

Prof. Jei Pil Wang | Extraction of Rare Earth Elements | Editorial Board Member

Professor at Pukyong National University | South Korea

Professor Jei-Pil Wang is a highly accomplished researcher in metallurgical engineering, recognized for his strong contributions to extractive metallurgy, chemical metallurgy, powder fabrication, and sustainable recycling processes. His scholarly influence is evident through 781 citations, 126 published documents, and an h-index of 13 in Scopus, reflecting a career marked by steady research productivity and global academic engagement. His work advances key areas such as metallurgical reaction mechanisms, thermochemical behavior, and process optimization, offering important insights into improving metal extraction routes and developing efficient powder fabrication methods. A significant portion of his research focuses on environmentally conscious recycling technologies, aligning with modern demands for resource sustainability and industrial waste reduction. His publications demonstrate a balanced integration of experimental rigor, analytical interpretation, and practical applicability, making his research valuable both to academia and industry. Professor Wang’s studies often bridge theoretical metallurgical principles with real-world processing challenges, contributing to technological advancements that enhance operational efficiency and environmental compliance. His body of work reflects a commitment to scientific clarity, methodological precision, and research relevance-qualities that are essential for maintaining editorial standards in high-quality journals. His ability to evaluate complex metallurgical problems, combined with a demonstrated record of producing impactful, peer-reviewed research, positions him strongly for responsibilities such as manuscript assessment, publication guidance, and strategic editorial decision-making. Given his experience, citation strength, and multidisciplinary research alignment, he is highly suitable for serving as an Editorial Board Member in journals focused on metallurgy, materials science, and sustainable metallurgical process development.

Profiles : Scopus | ORCID

Featured Publications

Urtnasan, E., Kim, C.-J., Chung, Y.-J., & Wang, J.-P. (2025). Selective recovery of rare earth elements from electric motors in end-of-life vehicles via copper slag for sustainability. Processes.

Lee, H., & Wang, J.-P. (2025). Design and implementation of a fire-responsive cooling–suppression integrated system for mitigating fire risks in data-center GPU servers. International Journal of Innovative Research and Scientific Studies.

Yeo, Y.-H., & Wang, J.-P. (2025). A study on freezing technology for the safe storage and transportation of spent lithium-ion batteries. International Journal of Innovative Research and Scientific Studies.

Jung, S.-H., Jung, J.-M., & Wang, J.-P. (2025). Development of a discharge-free pre-treatment device for spent lithium-ion batteries under an inert atmosphere. International Journal of Innovative Research and Scientific Studies.

Park, Y. S., & Wang, J.-P. (2025). Effect of metal borides on the hardness and wear of STD11 steel. International Journal of Innovative Research and Scientific Studies.

 

Yuqing Chen | Electrochemical | Best Researcher Award

Yuqing Chen | Electrochemical | Best Researcher Award

Associated Professor at Zhejiang Shuren University | China

Dr. Yuqing Chen is currently serves as a Distinguished Associate Researcher at the Institute of Interdisciplinary Sciences, Zhejiang Shuren University. She earned her Ph.D. in Advanced Energy Materials from Hunan University under the supervision of Professor Jilei Liu, a National Young Talent awardee and Vice Dean of the School of Materials Science and Engineering. Prior to this, she completed a joint Master’s program in Electrochemical Technology at Tsinghua University under Professor Xiangming He and obtained a Master’s degree in New Energy Materials and Devices from Wuhan University of Technology under Professor Quanyao Zhu. Her undergraduate studies were in Inorganic Nonmetallic Materials at Wuhan University of Engineering. Dr. Chen’s research focuses on new energy materials and devices, particularly on lithium-ion battery electrolyte design, solvation chemistry, and electrochemical safety. She previously worked as an electrolyte development engineer at Zhejiang Provincial Chemical Research Institute (Sinochem Blue Sky Group), where she designed novel solvent and additive molecules and evaluated battery safety under international standards. She currently leads teaching in university-level chemistry courses, energy chemistry curriculum development, and energy materials research. Dr. Chen has authored 10 SCI-indexed articles with a total impact factor of 150, holds three patents, co-authored one translated book, and has accumulated over 2,500 citations, with an h-index of 19. She has led national projects on high-performance and wide-temperature lithium-ion battery electrolytes and has received multiple honors including the Zhejiang Provincial Intellectual Property Award, the JEC 2021 Best Paper Award, National Scholarship, and other academic and research distinctions.

Profilie: Scopus | ORCID | Google Scholar

Featured Publications

Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., et al. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99.

Chen, Y., He, Q., Zhao, Y., Zhou, W., Xiao, P., Gao, P., Tavajohi, N., Tu, J., Li, B., et al. (2023). Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery. Nature Communications, 14(1), 8326.

Chen, Y., He, Q., Mo, Y., Zhou, W., Zhao, Y., Piao, N., Liu, C., Xiao, P., Liu, H., Li, B., et al. (2022). Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60° C. Advanced Energy Materials, 12(33), 2201631.

Kang, Y., Deng, C., Chen, Y., Liu, X., Liang, Z., Li, T., Hu, Q., Zhao, Y. (2020). Binder-free electrodes and their application for Li-ion batteries. Nanoscale Research Letters, 15(1), 112.

Mo, Y., Zhou, W., Wang, K., Xiao, K., Chen, Y., Wang, Z., Tang, P., Xiao, P., Gong, Y., et al. (2023). Engineering electrode/electrolyte interphase chemistry toward high-rate and long-life potassium ion full-cell. ACS Energy Letters, 8(2), 995–1002.

Zhou, W., He, B., Quan, L., Li, R., Chen, Y., Fan, C., Chen, S., Xu, C., Fan, X., Xing, L., et al. (2023). Binder chemistry dependent electrolyte reduction in potassium‐ion batteries: A successive, two‐step reduction way. Advanced Energy Materials, 13(2), 2202874.