Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Dr. Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Researcher at Tomsk Polytechnic University | Russia

Dr. Abdelrahman Salman is a materials and nuclear engineering researcher whose work centers on developing advanced surface-treatment strategies for enhancing the corrosion resistance, stability, and functional performance of metallic alloys used in nuclear reactor systems. His research focuses on thin-film coating technologies, thermo-physical diagnostics, and nondestructive evaluation techniques that enable precise characterization of surface integrity under extreme operational conditions. He has engineered and tested thin-film layers that modify corrosion pathways in fast-reactor alloys, investigated adhesion behavior and microstructural evolution in protective coatings, and identified new corrosion-resistant phenomena in emerging materials. His development of a ThermoEMF-based diagnostic device has provided a novel method for real-time temperature monitoring of micro-scale surfaces, expanding analytical capabilities for thermal-mechanical behavior of coated materials. Through advanced methods such as SEM, XRD, XRF, ECT, sputtering deposition, and specialized NDT approaches, he analyzes degradation mechanisms critical to nuclear safety and component life-cycle management. His scholarly output includes 3 Scopus-indexed publications, 6 citations, and an h-index of 2, supported by active participation in over 15 technical conferences and multiple invited research presentations. His work continually integrates experimental innovation with reactor-relevant problem-solving, contributing valuable insights to thin-film engineering, corrosion mitigation, and materials diagnostics. Salman’s growing recognition in the field reflects his strong research capabilities and his commitment to developing robust surface-treatment technologies essential for next-generation nuclear energy systems.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Salman, A., Syrtanov, M., & Lider, A. (2025). High-temperature oxidation effect of protective thin layers Ta/Cr coatings on Zr-1Nb alloy for corrosion-resistant components of nuclear reactors. Materials Letters, 379, 137646.
Cited by: 4

Salman, A. M., Lider, A. M., & Lomygin, A. D. (2025). Surface treatment techniques and control methods for enhancing corrosion resistance and very thin films management in fast nuclear reactors. Results in Surfaces and Interfaces, 100468.
Cited by: 3

Salman, A. M., Kudiiarov, V. N., & Lider, A. M. (2025). Low resistivity measurement of chromium coatings on zirconium alloys E110 for the production of accident-resistant core components of nuclear reactors. Russian Physics Journal, 1–9.

Salman, A. M., Syrtanov, M. S., & Lider, A. M. (2024). Non-destructive testing of a Zr-1Nb zirconium alloy with a protective Cr/Mo thin layers coating for the production of corrosion-resistant components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

Salman, A. M., Kudiyarov, V. N., & Lider, A. M. (2024). Non-destructive techniques on zirconium alloy E110 with chromium coatings for the production of emergency-resistant core components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

 

Harun Mindivan | Titanium Alloy | Best Researcher Award

Prof. Dr. Harun Mindivan | Titanium Alloy | Best Researcher Award

Professor at Bilecik Seyh Edebali University | Turkey

This researcher has established a distinguished scientific profile in materials science and mechanical engineering, with a strong emphasis on tribology, surface modification, and advanced coating technologies. With 612 citations, 52 Scopus-indexed documents, and an h-index of 13, their research impact is well recognized within the global scientific community. Their work centers on developing high-performance materials and engineered surfaces capable of withstanding extreme mechanical, thermal, and corrosive environments. They have contributed extensively to the development of plasma-nitrided steels, electroless and electrochemical borided alloys, graphene-enhanced composite coatings, high-velocity oxy-fuel (HVOF) sprayed stainless steel coatings, and oxide-reinforced thin films. Through comprehensive analyses of microstructure–property relationships, the researcher advances understanding of wear mechanisms, tribocorrosion behavior, hardness enhancement, and coating adhesion in metallic systems. Their investigations on metal–matrix composites-such as carbon-nanotube-reinforced aluminum and magnesium-offer significant innovations in lightweight structural materials. Additional contributions include studies on surface optimization of titanium alloys, corrosion-resistant coatings, and improvements in machinability and mechanical integrity of industrial steels. Their research outputs are consistently published in reputable scientific journals indexed in Scopus and other major databases, demonstrating steady productivity and high citation engagement. By integrating experimental surface engineering methods with performance evaluation techniques, the researcher provides actionable scientific advancements that support the development of durable engineering materials. This strong publication record and sustained contribution across multiple material systems highlight the researcher’s ongoing significance and excellence in the field.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Mindivan, H., Kayali, E. S., & Cimenoglu, H. (2008). Tribological behavior of squeeze cast aluminum matrix composites. Wear, 265(5–6), 645–654.

Mindivan, H., Efe, A., Kosatepe, A. H., & Kayali, E. S. (2014). Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Applied Surface Science, 318, 234–243.

Mindivan, H., Çimenoğlu, H., & Kayali, E. S. (2003). Microstructures and wear properties of brass synchroniser rings. Wear, 254(5–6), 532–537.

Mindivan, H., Baydogan, M., Kayali, E. S., & Cimenoglu, H. (2005). Wear behaviour of 7039 aluminum alloy. Materials Characterization, 54(3), 263–269.

Mindivan, H. (2010). Reciprocal sliding wear behaviour of B₄C particulate reinforced aluminum alloy composites. Materials Letters, 64(3), 405–407.

Xulong Ren | Surface Treatment | Best Researcher Award

Mr. Xulong Ren | Surface Treatment | Best Researcher Award

Guilin University of Electronic Technology | China

Mr. Xulong Ren is a developing metallurgical researcher whose work centers on high-energy beam surface treatment and microstructural modification of metallic materials, with particular emphasis on scanning electron beam polishing, in situ alloying, and beam-induced strengthening mechanisms. His research advances the understanding of temperature field behaviour, energy density optimization, and microstructural evolution during electron beam processing of alloys such as TC4, contributing to improved surface morphology, enhanced mechanical properties, and more precise control of material behaviour under high-energy input. He has produced a growing body of scientific work comprising 22 research documents, supported by 99 citations, and he maintains a Scopus h-index of 6, reflecting his emerging influence within the field. His publications document experimental and simulation-based approaches to optimize beam parameters, analyze rotational and radial thermal gradients, and investigate the microstructural responses of metals subjected to advanced surface treatment techniques. Through involvement in funded projects such as the Guangxi Natural Science Foundation and collaborations on national research initiatives, he has contributed to methodological improvements and innovative processing strategies for electron beam–assisted material modification. His work also includes analysis of beam–material interactions, ceramic–metal interface strengthening, and the design of polishing models for precision surface engineering. His contributions extend to research on nanostructured material polishing mechanisms and scanning beam fusion effects, reflecting a consistent focus on advancing industrially relevant metal surface engineering techniques. His expanding publication record, combined with ongoing research activity, positions him as a promising and impactful researcher in metallurgical process innovation.

Profile : Scopus

Featured Publications

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., Li, Y., & Su, Y. (2025). Temperature field simulation and experimental investigation for column-faced 45 steel via ultrafast electron beam scanning. Surface and Coatings Technology. (Cited: 4)

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., & Su, Y. (2025). Eutectic resolidification and ultrafast self-quenching of the microstructure in the surface layer of high-speed steel by scanning electron beam treatment. Vacuum. (Cited: 1)

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., Li, Y., & Su, Y. (2026). Analysis and experimental verification of the temperature field model for dynamic defocus electron beam processing of TC4 titanium alloy surfaces. International Journal of Thermal Sciences, 220(B).

Ren, X., Huang, X., Li, X., & Gao, S. (2025). Exploring the effect of beam current on the microstructure and properties of Vc/Ni alloying layer on 40Cr surface through electron beam surface alloying. Preprint.

Wei, D., Yang, F., Sui, X., Mo, Z., & Ren, X. (2024). Surface microstructure evolution and enhanced properties of Ti-6Al-4V using scanning electron beam. International Journal of Heat and Mass Transfer. (Cited: 1)

Muhammad Mubeen | Anti-Corrosion | Young Scientist Award

Dr. Muhammad Mubeen | Anti-Corrosion | Young Scientist Award

University of Science and Technology of China | China

Dr. Muhammad Mubeen is a highly motivated and accomplished researcher in the field of materials science and engineering, currently pursuing his Ph.D. at the University of Science and Technology of China, following an M.S. in Materials Science and Engineering from Beijing University of Chemical Technology and a B.Sc. in Metallurgy and Materials Engineering from Bahauddin Zakariya University, Multan, Pakistan. Mubeen has made significant contributions to corrosion-resistant coatings, nanomaterials, and advanced composite materials, authoring 25 documents with a total of 620 citations and an h-index of 12 according to Scopus. His key publications include studies on anti-corrosion self-healable epoxy coatings reinforced with Guanine-MRS@MoS2 heterostructures, heterostructured melamine resin spheres@GO epoxy composites for automotive applications (Chemical Engineering Journal, 2024), and the development of automated rust detection networks for steel structures (Archives of Civil and Mechanical Engineering, 2025). Mubeen’s research experience spans the synthesis and characterization of nanomaterials, fabrication of smart coatings for Zn-Al-Mg coated steel, and exploration of Nitinol alloys for biomedical applications. He has also actively engaged in professional internships at Pepsico, Inc., and PECS Industries, contributing to engineering, supply chain, and corporate affairs projects. His accolades include the Chinese Government Scholarship, PEEF Merit-Based Scholarship, and recognition for best research posters and interuniversity leadership. In addition to research, he has volunteered with organizations such as the Edhi Foundation and Bike Angel Association of China, reflecting his commitment to societal impact and STEM outreach.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Murtaza, H., Zhao, J., Tabish, M., Wang, J., Mubeen, M., Zhang, J., & Zhang, S. (2024). Protective and flame-retardant bifunctional epoxy-based nanocomposite coating by intercomponent synergy between modified CaAl-LDH and rGO. ACS Applied Materials & Interfaces, 16(10), 13114–13131.

Mubeen, M., Zhao, J., Tabish, M., Wang, J., Mahmood, M., Murtaza, H., & Jawad, M. (2024). Heterostructured melamine resin Spheres@GO reinforced epoxy composite achieving robust corrosion-resistance of Zn-Al-Mg coated steel for automotive applications. Chemical Engineering Journal, 499, 156070.

Mahmood, M., Mubeen, M., Wang, W., Tabish, M., Murtaza, H., & Jawad, M. (2025). Mechanically robust and self-healing protective coating for Zn-Al-Mg coated steel enhanced by benzotriazole-5 carboxylic acid intercalated MgAlCe ternary LDH. Progress in Organic Coatings, 201, 109107.

Flehan, A., Jinna, L., Tabish, M., Kumar, A., Mohammed, Y. A. Y. A., & Mubeen, M. (2023). Development of anti-corrosion and hydrophobicity of a nanostructured Ce-La film via the PDA post-treatment modification. Journal of Alloys and Compounds, 968, 172139.

Khalid, S., Mubeen, M., Tabish, M., Jawad, M., Malik, M. U., Ilyas, H. M. A., & others. (2025). When low-dimensional nanomaterials meet polymers: A promising configuration for flame retardancy and corrosion protection. Chemical Engineering Journal, 515, 163678.