Peter Naguib | Thin Film Dielectrics | Best Researcher Award

Mr. Peter Naguib | Thin Film Dielectrics | Best Researcher Award

Munich University of Applied Sciences | Germany

Peter Naguib is an accomplished researcher specializing in RF semiconductor technologies, thin-film SAW (TFSAW) filters, and wafer-level device development. His research focuses on optimizing charge trapping layers and wafer stack architectures for 5G and 6G RF devices, targeting reduced insertion loss and enhanced material performance. Utilizing a combination of cleanroom fabrication, nanoindentation-based mechanical analysis, and advanced computational modeling with FEM, COMSOL, MATLAB, and Python, he bridges experimental and theoretical approaches to advance semiconductor device technology. Peter’s work encompasses the characterization of dielectric thin films, development of high-resistivity silicon substrates, and innovation in wafer-level process integration. His interdisciplinary expertise extends to machine learning applications for predictive data analysis, embedded systems, and smart metering technologies, highlighting a commitment to practical engineering solutions. He has contributed to peer-reviewed publications and international conference presentations, including studies on silicon nitride charge trapping layers and mechanical characterization of thin films. Through his research, Peter is advancing the design, fabrication, and analysis of next-generation RF devices, emphasizing high-performance, energy-efficient, and scalable semiconductor solutions for communication and sensing applications.

Profile : ORCID

Featured Publications

Naguib, P. G., Ye, J., Knapp, M., Mbopda, G., Walenta, C. A., & Feiertag, G. (2025). Sound velocity determination for silicon oxide thin films: A mechanical approach using nanoindentation. Next Research, 2(3), 100578.

 

Syeda Naveed Kazmi | Fluid Mechanics | Best Researcher Award

Syeda Naveed Kazmi | Fluid Mechanics | Best Researcher Award

Lecturer at Mirpur University of Science and Technology | Pakistan

Dr. Syeda Naveed Kazmi is a Senior Lecturer in Mathematics at Mirpur University of Science and Technology (MUST), Pakistan, specializing in heat transfer analysis for peristaltic transport of Newtonian and non-Newtonian nanofluids. She completed her Ph.D. in Mathematics from COMSATS University Islamabad, following an M.Sc. from the University of Azad Jammu & Kashmir. Dr. Kazmi’s research focuses on fluid mechanics, computational fluid dynamics, and nanofluid heat transfer, with a particular emphasis on peristaltic transport mechanisms. She has authored several publications in international journals, including “Entropy generation analysis for hybrid nanofluid mobilized by peristalsis with an inclined magnetic field” in Advances in Mechanical Engineering and “Peristaltic flow under the effects of tilted magnetic field: enhancing heat transfer using graphene nanoparticles” in the International Journal of Modelling and Simulation. Additionally, her work on “Thermal analysis of hybrid nanoliquid containing iron-oxide (Fe3O4) and copper (Cu) nanoparticles in an enclosure” was published in Alexandria Engineering Journal. Her contributions to the field have been recognized internationally, and she continues to advance research in the areas of nanofluid dynamics and heat transfer. Dr. Kazmi’s academic journey reflects a commitment to excellence in research and education in applied mathematics.

Profile: ORCID | Google Scholar

Feautured Publications

Kazmi, S. N., Haq, R. U., & Mekkaoui, T. (2017). Thermal management of water based SWCNTs enclosed in a partially heated trapezoidal cavity via FEM. International Journal of Heat and Mass Transfer, 112, 972–982. Cited by 93.

Qin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., … Kazmi, S. N. (2017). Synthesis and mechanistic studies of curcumin analog‐based oximes as potential anticancer agents. Chemical Biology & Drug Design, 90(3), 443–449. Cited by 47.

Kazmi, S. N., Hussain, A., Rehman, K. U., & Shatanawi, W. (2024). Thermal analysis of hybrid nanoliquid contains iron-oxide (Fe3O4) and copper (Cu) nanoparticles in an enclosure. Alexandria Engineering Journal, 101, 176–185. Cited by 8.

Kazmi, S. N., Abbasi, F. M., & Shehzad, S. A. (2023). An electroosmotic peristaltic flow of graphene-lubrication oil nanofluid through a symmetric channel. Advances in Mechanical Engineering, 15(6), 16878132231177956. Cited by 5.

Kazmi, S. N., Abbasi, F. M., & Iqbal, J. (2024). Double diffusive convection for MHD peristaltic movement of Carreau nanofluid with Hall effects. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems. Cited by 3.

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Michele Greque De Morais | Hydrothermal Synthesis | Breakthrough Research Award

Research scholar at Federal University of Rio Grande |  Brazil

Prof. Dr. Michele Greque de Morais is a distinguished scholar at the Federal University of Rio Grande, recognized for her pioneering research in food engineering, biotechnology, and nanobiotechnology. She earned her degrees in Food Science and Engineering at FURG, complemented by international academic experiences at Philipps-Universität Marburg in Germany, the Scripps Institution of Oceanography, and the University of California, San Diego. Her scientific output is extensive, with over 150 peer-reviewed journal articles, 56 book chapters, 58 published books, and more than 200 conference papers. She has also contributed significantly to innovation with 27 patents and the development of 13 technological products. According to Scopus, she has authored 185 indexed works, accumulating 7246 citations with a robust h-index of 47, reflecting the global impact and recognition of her research contributions. Beyond academia, she has led 33 completed and 23 ongoing research projects, partnered with industries in 16 consultancy projects, and played key roles in national and international collaborations focused on sustainable development, microalgae-based bioproducts, and carbon biofixation technologies. Her editorial leadership includes serving as Associate Editor for Bioresource Technology. She has supervised numerous graduate and postgraduate students, shaping future generations of researchers, and has been recognized among the world’s most influential scientists by PLOS Biology. Through her dedication to advancing sustainable bioprocesses, food security, and biotechnology applications, Professor Michele Greque de Morais has established herself as a leading researcher with a profound impact on both scientific knowledge and societal development

Pofile: ScopusORCID | Google Scholar

Featured Publication

De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.

De Morais, M. G., Vaz, B. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015(1), 835761.

De Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal-fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173.

De Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9.

da Silva Vaz, B., Moreira, J. B., De Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77.