Qi Shi | Refractory metals | Best Researcher Award
Senior Engineer at Ningbo University of Technology | China
Assoc. Prof. Dr. Qi Shi is a distinguished researcher in materials science with a Ph.D. in Materials Science and Technology from Loughborough University, UK. Since returning to China, he has focused on the R&D of near-net-shape technologies, including advanced metal powders, powder metallurgy, and additive manufacturing. His pioneering work in radio-frequency (RF) plasma spheroidization of refractory metals has achieved breakthroughs in stable feeding technology for ultrafine powders, enabling consistent feeding and effective dispersion of low-density powders. He has also developed ultrasonic-fluidized bed wet classification methods for efficient micro-nano powder separation, leading to the production and commercialization of low-oxygen tantalum powder, ultrafine tungsten powder, and ultra-high hardness cast tungsten carbide powder. His research extends to metal additive manufacturing and post-processing, where he has advanced powder suitability evaluation and clarified the role of powder characteristics in selective laser melting (SLM). Through hot isostatic pressing and high-pressure heat treatment, he has enhanced strength–toughness synergy and significantly improved high-cycle fatigue performance in stainless steel, tantalum, and tungsten. Qi Shi has led five major government-funded projects, securing over RMB three million, and contributed to more than ten additional national and regional initiatives. He has published 35 academic papers in prestigious journals such as Additive Manufacturing, Materials Science and Engineering: A, and Journal of Materials Research and Technology, including 15 as first or corresponding author. According to his Scopus profile, he has more than 356 citations and an h-index of 13. He has also applied for 21 patents (15 granted), contributed to national standards, authored professional books, and received multiple awards, including the China Nonferrous Metals Industry Science and Technology Award (Second Prize) and the National Technical Standard Excellence Award (First Prize).
Profile: Scopus
Featured Publications
Shi, Q., Li, D., Du, W., Wu, A., & others. (2024). Improved mechanical properties and thermal conductivity of laser powder bed fused tungsten by using hot isostatic pressing. Cited by: 2
Pu, Y., Zhao, D., Liu, B., Shi, Q., & others. (2024). Microstructure evolution and mechanical properties of Ti-25Ta alloy fabricated by selective laser melting and hot isostatic pressing. Cited by: 1
Xu, J., Chen, H., Shi, Q., Liu, X., & others. (2024). Interdiffusion mechanism of hybrid interfacial layers for enhanced electrical resistivity and ultralow loss in Fe-based nanocrystalline soft magnetic composites. Cited by: 3
Qin, F., Shi, Q., Zhou, G., Wen, J., & others. (2024). Simultaneously enhanced strength and plasticity of laser powder bed fused tantalum by hot isostatic pressing. Cited by: 2
Qin, F., Shi, Q., Zhou, G., Yao, D., & others. (2023). Influence of powder particle size distribution on microstructure and mechanical properties of 17-4 PH stainless steel fabricated by selective laser melting. Cited by: 14