Dongxin Wang | Rare Metal Materials | Excellence in Research Award

Dr. Dongxin Wang | Rare Metal Materials | Excellence in Research Award

Director at State Key Laboratory of Special Rare Metal Materials | China

Dr. Dongxin Wang is a distinguished researcher recognized for impactful contributions to advanced materials and metallurgical research. His scholarly work emphasizes scientific rigor, innovation, and relevance to contemporary engineering challenges. He has published 41 peer-reviewed research documents, demonstrating sustained research productivity and academic leadership. His work has garnered 179 citations, reflecting strong visibility and influence within the international research community. With a Scopus h-index of 8, Dr. Wang’s research shows consistent citation performance across multiple publications. The quality, originality, and measurable impact of his research outputs clearly establish his suitability for the Excellence in Research Award, honoring significant and enduring contributions to research excellence.

Citation Metrics (Scopus)

200

100

50

25

0

Citations
179

Documents
41

h-index
8


View Scopus Profile

Featured Publications

Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Mr. Suleyman Sukuroglu | Corrosion Resistance Alloy | Best Academic Researcher Award

Assistant Professor at Gumushane University | Turkey

Mr. Suleyman Sukuroglu is a materials and surface engineering researcher whose work centers on advanced coating technologies, particularly micro-arc oxidation (MAO) and plasma electrolytic oxidation (PEO), applied to lightweight structural alloys such as magnesium, aluminum, titanium, and NiTi. With 149 citations, 12 Scopus-indexed publications, and an h-index of 7, he has contributed substantially to understanding and improving the mechanical, corrosion, wear, adhesion, tribocorrosion, and biocompatibility properties of ceramic and nanocomposite coatings. His studies involve the incorporation of functional nanoparticles-including TiB₂, ZnO, h-BN, graphene oxide, Ag, MoS₂, and sodium pentaborate-into oxide layers to enhance structural stability and multifunctional performance. He has published high-quality research demonstrating improvements in coating morphology, oxide layer integrity, and interfacial adhesion, contributing to the advancement of durable and corrosion-resistant surfaces for both industrial and biomedical applications. His work on NiTi shape-memory alloys and WE43 magnesium alloys has expanded knowledge on biocompatible coatings, corrosion control, and surface modification strategies for engineering systems. His research output appears in respected international journals such as Materials Today Communications, Journal of Adhesion Science and Technology, Applied Physics A, Arabian Journal for Science and Engineering, and multiple materials science conference proceedings. He has also contributed to national research projects involving tribological optimization, nanoparticle-reinforced oxide layers, and coating performance evaluation under challenging environments. Through sustained scientific output, a clear thematic research focus, and contributions to materials characterization and surface technologies, he has established a recognized academic profile within the fields of metallurgical engineering and surface modification science.

Profiles : Scopus | ORCID

Featured Publications

Belet, A. K., Şüküroğlu, S., & Şüküroğlu, E. E. (2025). Investigation of structural and adhesion properties of ZnO and h-BN doped TiO₂ coatings on Cp–Ti alloy. Journal of Adhesion Science and Technology.

Şüküroğlu, S. (2025). Characterization, corrosion, adhesion and wear properties of Al₂O₃ and Al₂O₃:TiB₂ composite coating on Al 7075 aluminum alloy by one-step micro-arc oxidation method. Materials Today Communications.

Şüküroğlu, S., Şüküroğlu, E. E., Totik, Y., Gülten, G., Efeoğlu, İ., & Avcı, S. (2024). Corrosion and adhesion properties of MAO-coated LA91 magnesium alloy. Materials Science and Technology.

Şüküroğlu, S., Totik, Y., Şüküroğlu, E. E., & Avcı, S. (2024). Investigation of corrosion properties of LA-91 alloy coated with MAO method. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C.

Şüküroğlu, S. (2023). Al 2024 alaşımı üzerine mikro ark oksidasyon yöntemiyle B4C ilaveli kompozit kaplamaların büyütülmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi.

Fu Lei | Corrosion Fatigue | Best Researcher Award

Prof. Fu Lei | Corrosion Fatigue | Best Researcher Award

Professor at Sichuan University of Science & Engineering | China

Professor Fu Lei, a distinguished materials scientist at Sichuan University of Science and Engineering, specializes in fatigue, fracture, and structural reliability of metallic systems. His research bridges experimental and computational mechanics, focusing on failure prediction, damage evolution, and fatigue-corrosion interactions in advanced alloys and composites. He has led more than 30 national and regional projects, notably under the National Natural Science Foundation of China, covering aerospace, nuclear, and new-energy applications. His Scopus record lists 32 documents, 127 citations, and an h-index of 7, demonstrating sustained scientific impact. His studies on hydrogen-induced fracture, micro-defect propagation, and microbiologically influenced corrosion have refined theoretical and experimental understanding of structural materials under coupled stresses. Beyond research, he has authored a monograph and contributed to developing fatigue-testing standards and additive-manufacturing methods for UAV composites and biomedical implants. Serving as Deputy Director of multiple provincial research centers, he fosters collaborative R&D between academia and industry, enabling technology transfer in functional materials and mechanical systems. Professor Fu’s integrated approach to mechanics, reliability engineering, and materials innovation underscores his global leadership and positions him as a top candidate for recognition under the Best Researcher Award.

Profiile : Scopus

Featured Publications

Fu, L., et al. (2025). Experimental study of the hydrogen fracture behavior of 30CrMo steel and simulation of hydrogen diffusion. JOM, [Advance online publication].

Fu, L., et al. (2025). Modification of graphene oxide composite coating on 7075 aluminum alloy and protection against Aspergillus niger corrosion. Anti-Corrosion Methods and Materials, [Advance online publication].

Fu, L., et al. (2025). Mechanics and long-term stability of porous titanium scaffolds with rhombic dodecahedrons. Journal of Materials Engineering and Performance, [Advance online publication].

 

Antoni Mir Pons | Smart Materials | Young Scientist Award

Mr. Antoni Mir Pons | Smart Materials | Young Scientist Award

University of the Balearic Islands | Spain

Mr. Antoni Mir Pons is a Spanish civil engineer specializing in construction engineering and structural reinforcement, currently serving as a researcher at the University of the Balearic Islands (UIB). He holds a Bachelor’s degree in Industrial Technologies Engineering and Business Administration and Management from the University of Girona. He also earned a Master’s in Industrial Engineering from UIB, where he received the Best Master’s Thesis award. His doctoral research focuses on the effects of semi-cyclic loading on structural reinforcement using iron-based shape-memory alloys (Fe-SMA). Pons has contributed to several international conferences, including SMAR 2024 in Salerno and the 15th fib International PhD Symposium in Budapest, presenting studies on Fe-SMA reinforced concrete structures. His research interests encompass concrete structures and blasting, with a particular emphasis on the application of Fe-SMA for strengthening existing structures. He has been involved in various R&D projects, such as RESTART and CICLO-ESTRUCTURA, focusing on the resilience of concrete infrastructure and the structural effects of cyclic overloads on Fe-SMA reinforced concrete beams. Pons has published articles in peer-reviewed journals, including “Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures” and “Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars,” both co-authored with Sandra del Río Bonnín, Carlos Ribas, and Antoni Cladera. His Scopus profile indicates 4 documents, 2 citations and an h-index of 1. Additionally, he has teaching experience in laboratory practices for the Structures I course in the Technical Architecture program at UIB. Pons is also active on ResearchGate, where he shares his publications and collaborates with fellow researchers.

Profile: Scopus 

Feautured Publilcations

Mir Pons, A., Del-Río-Bonnín, S., Ruiz-Pinilla, J. G., & Cladera, A. (2025). Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. Journal of Structural Engineering, 151(9), 04023109.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Experimental study on semi-cyclic loading effects on Fe-SMA reinforced concrete structures. Materials and Structures, 57(6), 1–16.

Mir Pons, A., Del-Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on the recovery stresses of iron-based shape-memory alloy bars. Materials Science and Engineering: A, 859, 144151.

Mir Pons, A., Kustov, B., Ruiz Pinilla, J. G., & Cladera, A. (2024). Characterization of 11-mm Fe-SMA bars used as prestressing reinforcement in concrete structures. Proceedings of the 13th International Conference on Smart Materials and Nanotechnology in Engineering (SMN 2024), 1–8.

Mir Pons, A., Del Río-Bonnín, S., Ribas, C., & Cladera, A. (2024). Effects of semi-cyclic loading on reinforced concrete beams strengthened with iron-based shape-memory alloy bars. Proceedings of the 15th fib International PhD Symposium in Civil Engineering, 1–8.

Huajie Luo | Thermal Crystal | Best Researcher Award

Assoc. Prof. Dr. Huajie Luo | Thermal Crystal | Best Researcher Award

Associate Professor at University of Science and Technology Beijing | China

Assoc. Prof. Dr. Huajie Luo is an accomplished researcher and associate professor at the University of Science and Technology Beijing, specializing in the design, structure, and performance regulation of ferroelectric ceramics and thin films. With over 60 published papers in high-impact journals, including Nature Communications, Science Advances, JACS, and Angewandte Chemie, he has made significant contributions to energy storage materials and piezoelectric technologies. His expertise spans from macroscopic electrostrain and energy density to atomic-level structural evolution using advanced synchrotron XRD, neutron diffraction, and total scattering techniques. Over the years, Dr. Luo has developed a strong profile in multi-scale crystal structure analysis and has been instrumental in unveiling mechanisms that enhance piezoelectric and energy storage performance in lead-free ceramics. With multiple national invention patents and recognition for his innovative contributions, Dr. Luo stands at the forefront of advancing sustainable and high-performance functional materials for energy applications.

Professional Profile

ORCID | Scopus

Education

Assoc. Prof. Dr. Huajie Luo pursued his higher education at the University of Science and Technology Beijing (USTB), where he embarked on a rigorous academic journey in materials science. He earned both his master’s and doctoral degrees in Physical Chemistry, with research focusing on the fundamental mechanisms and performance optimization of ferroelectric ceramics. His doctoral training emphasized advanced characterization techniques, including synchrotron XRD, neutron diffraction, and inverse Monte Carlo analysis, which allowed him to link structural evolution with macroscopic material properties. Following this, he undertook a prestigious postdoctoral fellowship at USTB’s Department of Physical Chemistry  where he deepened his research on high-performance electroceramics and functional thin films. His strong educational background not only provided him with profound theoretical knowledge but also with highly practical experimental skills, positioning him as a promising scholar and innovator in crystallography, energy storage materials, and piezoelectric systems.

Experience

Assoc. Prof. Dr. Huajie Luo’s professional career reflects a steady progression through advanced academic and research roles at the University of Science and Technology Beijing (USTB). After completing his doctoral studies, he became a postdoctoral researcher at USTB’s Department of Physical Chemistry, where he contributed to national-level projects focused on ferroelectric ceramics, synchrotron radiation analysis, and electrochemical energy storage. He was appointed associate professor at the School of Materials Science and Engineering, USTB. His role includes leading independent research projects, mentoring graduate students, and collaborating internationally on energy storage and structural design studies. Dr. Luo has also participated in major research programs such as China’s Key Research and Development initiatives, serving as both project leader and key contributor. His broad professional experience integrates materials chemistry, structural crystallography, and electroceramic design, providing both academic and industrial sectors with impactful solutions for energy storage, environmental sustainability, and next-generation materials innovation.

Awards and Honors

Throughout his career, Assoc. Prof. Dr. Huajie Luo has received multiple recognitions for his outstanding contributions to materials science and engineering. He was selected for China’s prestigious 7th Postdoctoral Innovative Talent Program, an initiative by the Ministry of Human Resources and Social Security to support promising young scientists. He was named Outstanding Postdoctoral Researcher at the University of Science and Technology Beijing, reflecting his exceptional contributions during his fellowship. He also earned the Wiley China High Contribution Author Award acknowledging the global impact of his research publications. Additionally, Dr. Luo was invited to join the Youth Editorial Board of Microstructures, highlighting his reputation as a rising leader in crystallography and electroceramics. His academic achievements are complemented by recognition in international conferences, where his oral and poster presentations have received attention in Japan, China, and global forums, solidifying his status as an innovative and influential researcher.

Research Focus

Assoc. Prof. Dr. Huajie Luo’s research centers on the design, structural analysis, and performance optimization of ferroelectric ceramics and thin films. His work emphasizes regulating macroscopic properties such as electrostrain and energy storage by tailoring multi-scale crystal structures. Using advanced techniques like synchrotron X-ray diffraction, neutron scattering, and total scattering analysis, he investigates the evolution of both short- and long-range structures to reveal the mechanisms behind high piezoelectricity and capacitive energy storage. Dr. Luo has made significant breakthroughs in achieving giant electrostrain in lead-free piezoelectrics and developing high-efficiency energy storage ceramics, with results published in top-tier journals including Science Advances, JACS, and Angewandte Chemie. His research not only provides new scientific insights but also proposes practical solutions for sustainable energy storage materials. By bridging fundamental crystallography with applied materials design, Dr. Luo aims to contribute to cleaner, greener energy systems while pushing the boundaries of functional materials innovation.

Publication top Notes

Conclusion

Assoc. Prof. Dr. Huajie Luo is highly suitable for the Best Researcher Award, given his impressive publication record, patents, and contributions to the understanding and development of lead-free ferroelectric ceramics with high electrostrain and energy storage properties. His research shows both academic depth and industrial applicability, making him a strong candidate. With expanded international collaborations and broader societal engagement, his impact could become even more profound.