Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Dr. Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Project Associate at National Institute of Technology Agartala | India

Dr. Dipankar Dey is a mechanical engineer specializing in advanced materials and tribology, recognized for his impactful studies on aluminum matrix composites reinforced with ceramic and recycled particles. His body of work, comprising 18 publications indexed in Scopus with 493 citations and an h-index of 15, addresses key challenges in the enhancement of wear resistance and mechanical integrity of lightweight metal composites. His research integrates experimental techniques and statistical optimization tools such as the grey-Taguchi and grey-fuzzy approaches to investigate friction, wear, and strength under diverse process parameters. Through extensive work on Al2024, Al7075, and other alloys, he has elucidated the role of TiB₂ and SiC reinforcement in improving tribological and structural characteristics, supporting applications in aerospace and automotive sectors. His recent studies on composites enhanced with recycled borosilicate glass align with sustainable engineering practices by reducing waste and resource consumption. Publishing in internationally reputed SCI journals, he has contributed novel methodologies for materials characterization and property optimization. Dr. Dey’s scholarly focus bridges experimental mechanics and environmental consciousness, advancing the frontiers of materials engineering and supporting industrial innovations for next-generation composite technologies.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Bhowmik, A., Dey, D., & Biswas, A. (2021). Comparative study of microstructure, physical and mechanical characterization of SiC/TiB₂ reinforced aluminium matrix composite. Silicon, 13(6), 2003–2010. Cited by: 99

Dey, D., Bhowmik, A., & Biswas, A. (2022). Effect of SiC content on mechanical and tribological properties of Al2024–SiC composites. Silicon, 14(1), 1–11. Cited by: 82

Bhowmik, A., Dey, D., & Biswas, A. (2022). Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB₂ dispersed aluminium matrix composite. Silicon, 14(3), 1133–1146. Cited by: 46

Dey, D., & Biswas, A. (2021). Comparative study of physical, mechanical and tribological properties of Al2024 alloy and SiC–TiB₂ composites. Silicon, 13(6), 1895–1906. Cited by: 42

Bhowmik, A., Dey, D., & Biswas, A. (2020). Tribological behaviour of aluminium–titanium diboride (Al7075–TiB₂) metal matrix composites prepared by stir casting process. Materials Today: Proceedings, 26, 2000–2004. Cited by: 42

Huijie Zhu | Functional Materials | Best Researcher Award

Prof. Huijie Zhu | Functional Materials | Best Researcher Award

Professor at Luoyang Institute of Science and Technology | China

Professor Zhu Huijie is a leading environmental engineering researcher at Luoyang University of Technology, focusing on wastewater purification and sustainable sewage treatment systems. His research primarily revolves around the use of nanomaterials, particularly nanoscale zero-valent iron and photocatalytic heterojunctions, for efficient removal of heavy metals such as arsenic, molybdenum, and antimony from aqueous solutions. With 37 scientific publications, 954 citations, and an h-index of 10 on Scopus, Professor Zhu has established a strong international research presence. His significant works in Journal of Hazardous Materials, Nanomaterials, and Water explore adsorption mechanisms, catalyst design, and environmental remediation techniques. He has successfully translated laboratory findings into practical applications through more than ten large-scale sewage treatment projects, including high-capacity wastewater stations serving thousands of residents. Additionally, his authored books — “Solar Aeration-Reactive Wall-Stabilized Sediment Combined Treatment Technology for Black and Odorous Water Bodies” and “Schwertmannite Environmental Effects” — highlight his contribution to eco-friendly water management solutions. Professor Zhu’s work exemplifies the integration of fundamental research with real-world environmental engineering, advancing both the scientific understanding and technological implementation of green wastewater treatment systems.

Profile :  Scopus | ORCID

Featured Publications

Zhu, H., Fu, S., Zhang, H., Wu, X., Han, J., Ma, X., Rong, J., Chen, S., Chen, G., & Li, Y. (2025). Research on synchronous synthesis of schwertmannite for removal of Pb²⁺ from acidic wastewater. Crystals.

Wang, Y., Zhu, H., He, P., Li, M., Cao, Y., Du, Y., Wen, Y., Zhao, Y., Liu, X., & Song, Y. (2025). Two-dimensional silver bismuth oxide/bismuth molybdate Z-scheme heterojunctions with rich oxygen vacancies for improved pollutant degradation and bacterial inactivation. Crystals.

Fu, S., Chu, Z., Huang, Z., Dong, X., Bie, J., Yang, Z., Zhu, H., Pu, W., Wu, W., & Liu, B. (2024). Construction of Z-scheme AgCl/BiOCl heterojunction with oxygen vacancies for improved pollutant degradation and bacterial inactivation. RSC Advances.

Fu, S., Huang, Z., Wang, Y., Zheng, B., Yuan, W., Li, L., Deng, P., Zhu, H., Zhang, H., & Liu, B. (2024). Fabrication of a novel Z-scheme AgBiO₃/BiOCl heterojunction with excellent photocatalytic performance towards organic pollutant. Materials.

Shi, M., Zhang, Y., Hong, W., Liu, J., Zhu, H., Liu, X., Geng, Y., Cai, Z., Lin, S., & Ni, C. (2022). Mechanism of simultaneous lead and chromium removal from contaminated wastewater by a schwertmannite-like mineral. Environmental Science and Pollution Research.

Jing Wu | Plasmonic Nanomaterials | Best Researcher Award

Dr. Jing Wu | Plasmonic Nanomaterials | Best Researcher Award

Lecturer at  Nantong University | China

Dr. Jing Wu earned her doctorate in optics from Shanghai University and currently serves as a full-time faculty member in the School of Physical Science and Technology at Nantong University. Her primary research revolves around the controlled fabrication of plasmonic nanostructures and their application in surface-enhanced Raman spectroscopy (SERS). She focuses on synthesizing noble-metal micro- and nanostructures with tailored optical properties for enhanced molecular detection sensitivity. Dr. Wu’s work integrates advanced nanofabrication, electromagnetic simulation, and molecular sensing techniques to design SERS-active substrates capable of detecting ultra-trace biomolecules. She has authored nearly 20 SCI-indexed papers, contributed to several invention patents, and led provincial-level research and teaching reform projects. Her scientific endeavors are dedicated to improving the precision and reliability of nanoscale optical sensors, contributing to advancements in materials science, biomedical engineering, and analytical chemistry. With 228 citations, 40 publications, and an h-index of 9 on Scopus, Dr. Wu has established a solid research profile reflecting both innovation and academic rigor. Her achievements underscore her role as a promising researcher in the fields of nanophotonics and plasmonic sensing.

Profile : Scopus | ORCID

Featured Publications

Wu, J., et al. (2025). A magnetic coupled organic SERS platform integrating acetonitrile-driven microextraction and hotspot enrichment: A new strategy for highly sensitive and precise detection of drug molecules in complex matrices. Biosensors and Bioelectronics, 2025.

Wu, J., et al. (2025). SERS technology in virus detection: Advances, challenges, and future perspectives, 2025.

Wu, J., et al. (2025). SERS detection of analgesics in serum based on Ag nanocubes for perioperative monitoring. Talanta, 2025. Citations: 4

Wu, J., et al. (2025). Advanced SERSome-based artificial-intelligence technology for identifying medicinal and edible homologs. Talanta, 2025.

Liyuan Liu | Alloy Development | Best Researcher Award

Liyuan Liu | Alloy Development | Best Researcher Award

Professor at Kunming University of Science and Technology |  China

Liyuan Liu is a Professor of Metallurgical Engineering at Kunming University of Science and Technology, China, with a Doctor of Engineering degree from Harbin Engineering University. As a high-level talent introduction scholar, he has established himself as a leading researcher in high-entropy alloys (HEAs), focusing on synergistic enhancement of strength–ductility, radiation resistance, and high-strength/high-conductivity copper alloys. Over his career, he has published 48 peer-reviewed papers in top international journals including Advanced Science, Acta Materialia, International Journal of Plasticity, Journal of Materials Science & Technology, and Scripta Materialia. His impactful research has garnered more than 877 citations with an H-index of 12, reflecting both the quality and influence of his work in the field. He has led or participated in over ten major research projects funded by the National Natural Science Foundation of China, the National Key R&D Program, and the Ministry of Industry and Information Technology, contributing to both theoretical advances and engineering applications. His innovations include the development of nanoprecipitate-strengthened HEAs, elucidation of stacking fault and twinning deformation mechanisms, and breakthroughs in flash-heating-driven chemical supersaturation to achieve high-density nanoprecipitates. Beyond research, he holds several patents in high-entropy alloy and stainless-steel systems, underscoring his contributions to applied materials science. Professor Liu is also active in professional societies, serving as a member of the Chinese Society for Materials Research, the Chinese Nuclear Society (Radiation Effects Branch), and the China Nonferrous Metals Association. His work continues to shape the advancement of next-generation structural and functional alloys for nuclear, aerospace, and energy applications

Pofile: Scopus

Featured Publication

Li, G., Liu, L., Gao, P., Teng, Z., Lu, Q., Xu, Z., Fu, L., & Yi, J. (2025). Enhancing the mechanical properties of multi-principal element alloys via constructing dual-heterostructures through the immiscibility between elements. Materials Science and Engineering A.

Luo, R., Liu, L., Teng, Z., Yi, J., & Li, C. (2025). Achieving strength-ductility synergy in a multi-principal element alloy via constructing multi-scale heterostructures controlled by spinodal decomposition. Journal of Alloys and Compounds.

Peng, Y., Xu, Z., Fu, L., Liu, L., Gao, P., Lu, Q., Tao, J., Bao, R., Yi, J., & Li, C. (2025). Achieving strength–ductility synergy in aluminum matrix composites through promoting the intragranular distribution of nanoparticles. Advanced Composites and Hybrid Materials.

Liu, L., Zhang, Y., Li, J., Fan, M., Wang, X., Wu, G., Yang, Z., Luan, J., Jiao, Z., Liu, C. T., Liaw, P. K., & Zhang, Z. (2022). Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 153, 103235.

Liu, L., Zhang, Y., Zhang, Z., Li, J., Jiang, W., & Sun, L. (2024). Nanoprecipitate and stacking fault-induced high strength and ductility in a multi-scale heterostructured high entropy alloy. International Journal of Plasticity, 172, 103853.