Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Dr. Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Researcher at Tomsk Polytechnic University | Russia

Dr. Abdelrahman Salman is a materials and nuclear engineering researcher whose work centers on developing advanced surface-treatment strategies for enhancing the corrosion resistance, stability, and functional performance of metallic alloys used in nuclear reactor systems. His research focuses on thin-film coating technologies, thermo-physical diagnostics, and nondestructive evaluation techniques that enable precise characterization of surface integrity under extreme operational conditions. He has engineered and tested thin-film layers that modify corrosion pathways in fast-reactor alloys, investigated adhesion behavior and microstructural evolution in protective coatings, and identified new corrosion-resistant phenomena in emerging materials. His development of a ThermoEMF-based diagnostic device has provided a novel method for real-time temperature monitoring of micro-scale surfaces, expanding analytical capabilities for thermal-mechanical behavior of coated materials. Through advanced methods such as SEM, XRD, XRF, ECT, sputtering deposition, and specialized NDT approaches, he analyzes degradation mechanisms critical to nuclear safety and component life-cycle management. His scholarly output includes 3 Scopus-indexed publications, 6 citations, and an h-index of 2, supported by active participation in over 15 technical conferences and multiple invited research presentations. His work continually integrates experimental innovation with reactor-relevant problem-solving, contributing valuable insights to thin-film engineering, corrosion mitigation, and materials diagnostics. Salman’s growing recognition in the field reflects his strong research capabilities and his commitment to developing robust surface-treatment technologies essential for next-generation nuclear energy systems.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Salman, A., Syrtanov, M., & Lider, A. (2025). High-temperature oxidation effect of protective thin layers Ta/Cr coatings on Zr-1Nb alloy for corrosion-resistant components of nuclear reactors. Materials Letters, 379, 137646.
Cited by: 4

Salman, A. M., Lider, A. M., & Lomygin, A. D. (2025). Surface treatment techniques and control methods for enhancing corrosion resistance and very thin films management in fast nuclear reactors. Results in Surfaces and Interfaces, 100468.
Cited by: 3

Salman, A. M., Kudiiarov, V. N., & Lider, A. M. (2025). Low resistivity measurement of chromium coatings on zirconium alloys E110 for the production of accident-resistant core components of nuclear reactors. Russian Physics Journal, 1–9.

Salman, A. M., Syrtanov, M. S., & Lider, A. M. (2024). Non-destructive testing of a Zr-1Nb zirconium alloy with a protective Cr/Mo thin layers coating for the production of corrosion-resistant components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

Salman, A. M., Kudiyarov, V. N., & Lider, A. M. (2024). Non-destructive techniques on zirconium alloy E110 with chromium coatings for the production of emergency-resistant core components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

 

Hongyun Zhang | Icephobic Materials | Best Researcher Award

Prof. Hongyun Zhang | Icephobic Materials | Best Researcher Award

Professor at Kaili University | China

Dr. Hongyun Zhang is a materials and surface-engineering researcher whose work focuses on the thermodynamic and microstructural design of superhydrophobic and ice-phobic surfaces, generating a coherent body of scholarship that has earned 270 citations, 19 publications, and a Scopus h-index of 9. His studies analyse the physics underlying wetting behaviour on engineered metallic substrates, using thermodynamic modelling to map relationships between surface morphology, adhesion work, and stability of wetting states. A central contribution of his research is the development of pillar-based microstructural models that explain how hierarchical roughness controls free-energy barriers, contact-angle hysteresis, and transitions between Cassie–Baxter and Wenzel states. This modelling framework not only clarifies the energetics of water-repellent surfaces but also guides rational design of self-cleaning and drag-reducing coatings. Dr. Zhang extends these principles into ice-phobicity by computing icing delay times and evaluating how micro-scale geometry reduces ice adhesion and enhances surface robustness under sub-zero conditions. His work employs a blend of theoretical analysis, computational modelling, and applied surface engineering, providing quantitative design tools for improving performance of metal-based components in aviation, transportation, energy infrastructure, and environmental protection systems. Across his publications, he maintains a strong emphasis on linking microstructure manipulation with measurable functional outcomes, contributing both conceptual clarity and practical direction to the advancement of surface physics and metallurgical materials engineering. His cumulative output demonstrates consistent impact, a focused research niche, and a meaningful contribution to the development of advanced hydrophobic and anti-icing technologies.

Profiles : Scopus | ORCID

Featured Publlications

Qin, Y., Zhang, H., Marlowe, N. M., & Chen, W. (2016). Evaluation of human papillomavirus detection by Abbott m2000 system on samples collected by FTA Elute Card in a Chinese HIV-1 positive population. Cited by 17

Zhang, H. (2025). Selection of second step micro-morphology for anti-icing surfaces based on icing time. Applied Surface Science. Cited by 4

Zhang, H., Yang, Y. L., Pan, J. F., & Zhang, X. K. (2018). Compare study between icephobicity and superhydrophobicity. Cited by 29

Zhang, H., Yang, Y. L., Pan, J. F., & Yang, J. (2018). Study for critical roughness based on interfacial energy. Cited by 8

Zhao, L., Wang, D., Zhang, H., & Zhi, H. (2016). Fine mapping of the RSC8 locus and expression analysis of candidate SMV resistance genes in soybean.  Cited by 28

Amit Kumar Verma | Surface Engineering | Young Scientist Award

Dr. Amit Kumar Verma | Surface Engineering | Young Scientist Award

Ph.D. Research Scholar at University of Lucknow | India

Amit Kumar Verma is a passionate researcher in the field of advanced materials and gas sensor technology. He is currently pursuing his Ph.D. at the University of Lucknow in the Department of Physics, working under the guidance of Prof. N. K. Pandey. His research is centered on the synthesis and characterization of metal oxide-based thin films for humidity and gas sensing applications. With a strong foundation in physics, he has developed expertise in nanostructured materials, ion beam irradiation, and hydrogen sensing. He has actively contributed to multiple high-impact research publications and has presented his work at numerous national and international conferences. Amit is dedicated to the development of energy-efficient, environmentally responsive sensor technologies. His commitment to interdisciplinary collaboration and scientific innovation continues to drive his work forward. As an emerging scholar, he is also involved in supervising postgraduate research, contributing to the next generation of scientific inquiry.

Professiona Profiles

Scopus

Education

Amit Kumar Verma began his academic journey with a Bachelor of Science in Physics and Mathematics from the University of Allahabad, followed by a Master of Science in Physics with a specialization in Electronics. He achieved a high academic standing during his postgraduate studies. Currently, he is pursuing a Ph.D. in Physics at the University of Lucknow, focusing on the development of metal oxide-based gas sensors. His doctoral thesis involves the synthesis and structural analysis of nanostructured metal oxides using ion beam irradiation and various deposition techniques. Amit’s educational path reflects a consistent dedication to the physical sciences, with a strong emphasis on applied materials research. Through his academic training, he has developed proficiency in spectroscopy, microscopy, and advanced thin-film technologies. His hands-on experience with analytical techniques and research instrumentation underpins his contributions to sensor technology and nanomaterials development for practical applications.

Experience

Amit Kumar Verma has cultivated a strong research background in materials science, particularly within the field of gas sensors and nanostructured thin films. As a doctoral researcher at the University of Lucknow, he has been involved in the fabrication and analysis of metal oxide-based chemiresistors for environmental and hydrogen sensing. He has gained practical experience through workshops and internships at institutions such as IIT Jodhpur, IITRAM, and the Inter-University Accelerator Centre in New Delhi. His research focuses on thin film deposition techniques, ion beam modification, and characterization methods like XRD, SEM, TEM, and XPS. In addition to his technical work, he has mentored postgraduate students, guiding them in nanomaterial synthesis and device development. Amit has presented his research at several national conferences, contributing actively to the academic community. His collaborative work with multidisciplinary teams has resulted in impactful publications and practical advancements in sensor technology.

Awards & Honors

Amit Kumar Verma has received several recognitions for his academic and scientific contributions. He was awarded the Karmayogi Fellowship at the University of Lucknow in recognition of his research potential and academic performance. During his early academic years, he was honored as a gold medalist in high school and has consistently maintained strong academic results. In addition to academic achievements, he was elected as the Science Faculty Representative in the Student Union Election at the University of Allahabad, highlighting his leadership and peer recognition. Amit has participated in prestigious training programs and workshops, including sessions on ion beams in energy materials and hydrogen gas sensors. His work has earned him multiple opportunities to present at national-level conferences and symposia. These accolades reflect his commitment to excellence in both scientific research and academic service, positioning him as a promising young researcher in the field of advanced materials and sensor applications.

Research Focus

Amit Kumar Verma’s research is centered on the synthesis, modification, and characterization of nanostructured metal oxide thin films for gas sensing applications. His work explores the effects of ion beam irradiation and doping techniques on the structural, optical, and sensing properties of materials such as WO3, MoO3, SnO2, and CuO. He focuses particularly on hydrogen sensing, developing high-performance chemiresistors for environmental and industrial safety. His interdisciplinary approach combines material synthesis using sol-gel, spin coating, and sputtering with advanced characterization techniques including XRD, SEM, TEM, and UV-Vis spectroscopy. He also investigates structural modifications using ion irradiation and studies their impact on gas sensitivity and selectivity. His work aims to address the global need for efficient, reliable, and cost-effective gas detection systems. By integrating knowledge of materials science, physics, and electrical properties, Amit is contributing to the development of next-generation sensor devices for real-world applications.

Publication Top Notes

Title: Slope stability assessment of the section along Balipara–Charduar–Tawang Road, Arunachal Pradesh, India
Year: 2025

Title: Tailoring the properties of WO3 via 120 MeV Ni7+ beam irradiation: A pathway to high-performance hydrogen sensor
Year: 2025

Title: Effect of Elevated Temperature on Mechanical and Structural Properties of Bentonite from Barmer, Rajasthan
Year: 2025

Title: Enhanced hydrogen gas sensing performance with Ag-doped WO3 thin film
Year: 2025
Citations: 9

Title: Effect of pore water pressure on slope stability in a heavy-haul railway embankment using a deep learning approach
Year: 2025
Citations: 1

Title: An extensive analysis: Impact of 120 MeV Ni7 + beam irradiation on the structural, morphological, and optical properties of WO3 thin films
Year: 2025
Citations: 2

Title: Cutting-Edge OER Electrocatalysts for Sustainable Seawater Electrolysis: Progress, Obstacles, and Future Prospects
Year: Not specified
Citations: 5

Conclusion

Amit Kumar Verma is a strong and suitable candidate for the Research for Young Scientist Award. His focused work on gas sensors and nanostructured materials, supported by strong publication metrics and technical depth, demonstrate exceptional promise as a young researcher. With ongoing research contributions, mentorship, and increasing academic visibility, he represents the next generation of scholars poised to make impactful advancements in materials and sensor technology.