Abdellah Marzoug | Contact Mechanics | Best Researcher Award

Mr. Abdellah Marzoug | Contact Mechanics | Best Researcher Award

National Institute of Applied Sciences of Lyon | France

Mr. Abdellah Marzoug is a researcher specializing in mechanics, tribology, and multiscale modeling, with a focus on rough surface contact behavior and damage mechanisms relevant to high-performance materials and engineering systems. His work integrates theoretical modeling, numerical simulation, and experimental correlation to understand micropitting, fatigue initiation, and crack propagation in mechanical components, particularly in the context of transmission systems and surface-engineered materials. He has contributed to the advancement of analytical and computational frameworks for contact pressure prediction and roughness-induced stress fields, including his peer-reviewed publication in the International Journal of Solids and Structures (2025), which provides closed-form solutions for contact pressure distributions generated by 2D rough profiles. His research portfolio also includes contributions to structural mechanics and stress intensity modeling through conference publications and collaborative studies. He has presented his findings at internationally recognized scientific venues, such as the Leeds-Lyon Symposium on Tribology and the International Conference on Computational Contact Mechanics, reflecting growing visibility in the global research community. His research strengths lie in fatigue modeling, multiscale analysis, rough surface characterization, and constitutive modeling of materials under complex loading conditions, contributing to improved reliability, optimization, and predictive assessment of mechanical systems used in aerospace, automotive, and industrial applications.

Profile : ORCID

Featured Publications

Marzoug, A., Chaise, T., Raoult, I., Ye, W., Duval, A., & Nelias, D. (2025). Closed-form solutions for contact pressure distribution generated by 2D rough profiles. International Journal of Solids and Structures.

Delattre, B., Marzoug, A., & Villars, O. (2024). Facteurs d’intensité de contrainte dans un PSE 3D modélisé par Super-Element. Colloque National en Calcul de Structures (CSMA 2024).

Yanhong Wang | Wear Resistant Coating | Best Researcher Award

Ms. Yanhong Wang | Wear Resistant Coating | Best Researcher Award

University of Science and Technology Beijing | China

Yanhong Wang is a metallurgical engineering researcher specializing in wear-resistant coatings for steel substrates, with a focus on advancing long-life materials that support low-carbon industrial transformation. Her work emphasizes the design, preparation, and performance optimization of coatings that enhance abrasion resistance under severe service conditions. Through her Scopus-indexed publication, “A Review of Wear-Resistant Coatings for Steel Substrates: Applications and Challenges” in Metals (2025), she provides a comprehensive assessment of coating technologies including thermal spray processes, laser cladding, chemical and physical vapor deposition, and emerging hybrid approaches. ORCID currently indexes 1 research document and an h-index of 1, reflecting her growing scholarly influence. Her research highlights the interplay between coating microstructure, bonding mechanisms, mechanical performance, and environmental durability, identifying key factors that determine coating reliability in high-wear environments. By analyzing failure modes, synergistic strengthening strategies, and the compatibility of coating materials with steel substrates, she contributes essential insights for designing next-generation protective layers. Her work also evaluates industrial applicability, cost-effectiveness, and the sustainability benefits of durable surface engineering solutions, positioning her research within the broader goals of carbon neutrality and reduced resource consumption. Through systematic knowledge integration, she provides valuable guidance for future research directions and industrial innovation in metallurgical coatings.

Profile : ORCID

Featured Publication

Wang, Y., Feng, C., Lin, T., Zhu, R., Zhang, J., Yang, H., Yi, S., He, J., Tu, M., & Wei, G. (2025). A review of wear-resistant coatings for steel substrates: Applications and challenges. Metals.

 

 

Xulong Ren | Surface Treatment | Best Researcher Award

Mr. Xulong Ren | Surface Treatment | Best Researcher Award

Guilin University of Electronic Technology | China

Mr. Xulong Ren is a developing metallurgical researcher whose work centers on high-energy beam surface treatment and microstructural modification of metallic materials, with particular emphasis on scanning electron beam polishing, in situ alloying, and beam-induced strengthening mechanisms. His research advances the understanding of temperature field behaviour, energy density optimization, and microstructural evolution during electron beam processing of alloys such as TC4, contributing to improved surface morphology, enhanced mechanical properties, and more precise control of material behaviour under high-energy input. He has produced a growing body of scientific work comprising 22 research documents, supported by 99 citations, and he maintains a Scopus h-index of 6, reflecting his emerging influence within the field. His publications document experimental and simulation-based approaches to optimize beam parameters, analyze rotational and radial thermal gradients, and investigate the microstructural responses of metals subjected to advanced surface treatment techniques. Through involvement in funded projects such as the Guangxi Natural Science Foundation and collaborations on national research initiatives, he has contributed to methodological improvements and innovative processing strategies for electron beam–assisted material modification. His work also includes analysis of beam–material interactions, ceramic–metal interface strengthening, and the design of polishing models for precision surface engineering. His contributions extend to research on nanostructured material polishing mechanisms and scanning beam fusion effects, reflecting a consistent focus on advancing industrially relevant metal surface engineering techniques. His expanding publication record, combined with ongoing research activity, positions him as a promising and impactful researcher in metallurgical process innovation.

Profile : Scopus

Featured Publications

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., Li, Y., & Su, Y. (2025). Temperature field simulation and experimental investigation for column-faced 45 steel via ultrafast electron beam scanning. Surface and Coatings Technology. (Cited: 4)

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., & Su, Y. (2025). Eutectic resolidification and ultrafast self-quenching of the microstructure in the surface layer of high-speed steel by scanning electron beam treatment. Vacuum. (Cited: 1)

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., Li, Y., & Su, Y. (2026). Analysis and experimental verification of the temperature field model for dynamic defocus electron beam processing of TC4 titanium alloy surfaces. International Journal of Thermal Sciences, 220(B).

Ren, X., Huang, X., Li, X., & Gao, S. (2025). Exploring the effect of beam current on the microstructure and properties of Vc/Ni alloying layer on 40Cr surface through electron beam surface alloying. Preprint.

Wei, D., Yang, F., Sui, X., Mo, Z., & Ren, X. (2024). Surface microstructure evolution and enhanced properties of Ti-6Al-4V using scanning electron beam. International Journal of Heat and Mass Transfer. (Cited: 1)

Cheng Qian | Friction and Sealing | Best Researcher Award

Prof. Dr. Cheng Qian | Friction and Sealing | Best Researcher Award

Research Associate at Ningbo Institute of Technology, China.

🎓 Qian Cheng is a dedicated Ph.D. candidate in Mechanical Engineering at Shenyang University of Technology, under the mentorship of Dr. Shijie Wang. He specializes in advanced material design, surface engineering, and tribology. His research integrates nanotechnology, molecular simulations, and experimental validation to enhance polymer composites’ mechanical and aging properties. Qian Cheng has a multidisciplinary approach, combining engineering principles with data-driven methodologies such as machine learning 🤖. With 9 SCI-indexed papers as a first/corresponding author and ongoing cutting-edge projects, he continues to make impactful contributions in the fields of polymer science and mechanical systems 🔬⚙️. Known for his rigorous analytical skills and international academic exposure, including time spent in Germany, Cheng aims to innovate smarter, more resilient materials for modern mechanical systems 🌍🧪.

Professional Profiles📖

Scopus

ORCID

Education📚

📚 Qian Cheng’s academic journey reflects a strong foundation in mechanical and materials engineering. He began his undergraduate studies in Mechanical Design, Manufacturing, and Automation at Shenyang University of Aeronautics and Astronautics (2011–2015) ✈️🔧. He then pursued a Master’s degree (2016–2019) and is now completing a Ph.D. in Mechanical Engineering (2019–2024) at Shenyang University of Technology 🏫⚙️. During his Master’s, he was selected for an international exchange program at the University of Ahlen, Germany (2018–2019) 🇩🇪, where he specialized in polymer science 🧫. His educational path combines theoretical knowledge and hands-on experimentation with simulation-based analysis. Cheng’s passion for learning and innovation is evident in his commitment to pushing boundaries in materials science and mechanical systems development. His global perspective and interdisciplinary training empower him to tackle complex engineering challenges using both traditional and advanced tools 🌐🛠️.

Professional Experience💼

Qian Cheng has built his research experience around a comprehensive integration of simulation and experimental mechanics. He has actively contributed to research projects focusing on improving tribological behavior and thermal-oxidative aging resistance in polymer nanocomposites. During his Ph.D., Cheng designed and conducted molecular dynamics simulations to analyze the influence of nanomaterial structures on rubber composites. He also participated in lab-based experiments for materials testing and validation, bridging theory with practice. His stint at the University of Ahlen gave him hands-on experience in international research and polymer analysis. In parallel with his research, he has collaborated with fellow researchers on developing machine learning models for material property prediction. His professional trajectory is marked by academic rigor, publication success, and technical fluency, preparing him to contribute significantly to the field of mechanical and materials engineering.

Research Focus 🔍

Qian Cheng’s research 🔍 revolves around mechanical engineering, polymer nanocomposites, and material simulation. His work focuses on thermo-oxidative aging, mechanical durability, and tribological properties of rubber-based nanomaterials 🧪🛞. Using molecular dynamics simulations, he evaluates how different nanofillers—like carbon nanotubes, graphene oxide, and molybdenum disulfide—impact the performance of nitrile butadiene rubber (NBR) composites 🔄🧬. In addition, Cheng incorporates machine learning to model material behavior, enabling predictive design for future applications 🤖📊. His studies aim to improve the reliability and efficiency of components used in high-friction, high-temperature environments—critical in aerospace, automotive, and machinery sectors ✈️🚗⚙️. He also explores surface engineering and multi-scale materials research, developing systems that integrate nano-level innovation with macro-level function. His ambition is to pioneer sustainable and smart materials for next-generation mechanical equipment 🌿🔧.

Awards and Honors🏆

While specific award names are not provided, Qian Cheng’s prolific publication record in JCR Q1 and Q2 journals like Journal of Materials Research and Technology (IF=6.4), Journal of Polymer Science, and Polymer Composites indicates scholarly excellence 📚🏅. His acceptance as a visiting scholar at the University of Ahlen, Germany , reflects international academic recognition. The consistent acceptance of his work in high-impact journals suggests his research is well-regarded in the scientific community. His research outputs contribute to major areas like nanomaterials, surface modification, and tribological enhancement—critical fields within mechanical and polymer engineering. Cheng’s work has been cited and used as reference for tribological material improvement and molecular simulation techniques, showcasing his growing influence 🌟📖. He is expected to be a strong contender for future research fellowships and innovation awards in engineering science and materials research 🏆🔬.

Conclusion ✅

Cheng Qian demonstrates outstanding potential and current achievements as a researcher in advanced polymer nanocomposites and material science. His deep understanding of simulation-driven material design, backed by strong experimental work and publication output, positions him as a highly deserving candidate for the Best Researcher Award 🏆. While areas like project leadership and industry engagement can be further developed, his profile is well-rounded, ambitious, and aligned with future-ready scientific innovation.

Publications to Noted📚

Synergistic Enhancement of Mechanical and Tribological Properties of Nitrile Butadiene Rubber With RD‐Modified GO and CNTs as Antioxidants: Experiments and Molecular Dynamics Simulations

Authors: Cheng Qian; Xiaochao Liu; Wenfu Zeng; Guofeng Zhang; Rui Nie

Year: 2025

Comparative Study of the Tribological Properties of Diamond-Like Carbon and Nitride Coatings Deposited on 40Cr Surfaces

Authors: Rui Nie; Zhuobiao Li; Wenfu Zeng; Cheng Qian; Yunlong Li

Year: 2025

Comparative study on thermal-oxygen aging and tribological properties of carbon nanotubes and graphene sheet reinforced hydrogenated nitrile rubber composite materials

Authors: Qian C.; Wang S.; Li Y.; Nie R.; Song S.

Year: 2024

Design and preparation of sulfur vulcanized polyamide 66 cross-linked nitrile butadiene rubber networked and its application in blending with graphene oxide

Authors: Li X.; Li Y.; Qian C.; Wang S.; Nie R.

Year: 2024

Molecular dynamics investigation on the thermal-oxidative aging and mechanical properties of nitrile butadiene rubber composites with molybdenum disulfide

Authors: Qian C.; Chen J.; Wang S.; Wang M.; Song S.

Year: 2024

Relationship between the aging thermal oxygen and mechanical properties of nitrile butadiene rubber reinforced by RD-loaded carboxylated carbon nanotubes

Authors: Wang M.; Li Y.; Qian C.; Wang S.; Liu D.

Year: 2024

Review on stator rubber of progressive cavity pump for oil extraction,采油螺杆泵定子橡胶研究综述

Authors: Wang S.; Chen Z.; Li Y.; Qian C.; Yang B.

Year: 2024

Molecular dynamics and experimental study of mechanical and tribological properties of graphene‐reinforced nitrile butadiene rubber–phenolic resin composites

Authors: Yunlong Li; Zhiju Chen; Cheng Qian; Shijie Wang; Rui Nie

Year: 2024

A fine-tuning deep residual convolutional neural network for emotion recognition based on frequency-channel matrices representation of one-dimensional electroencephalography

Authors: Chen J.; Cui Y.; Qian C.; He E.

Year: 2023

A Study on the Relationship between the Aging Thermal Oxygen and Mechanical Properties of Nitrile Rubber Reinforced by Rd Load Carboxylated Carbon Nanotubes

Authors: Wang M.; Li Y.; Qian C.; Wang S.; Liu D.

Year: 2023