Sun-Dong Kim | Water Electrolysis | Best Researcher Award

Dr. Sun-Dong Kim | Water Electrolysis | Best Researcher Award

Chief at Korea Institute of Energy Research | South Korea

Dr. Sun-Dong Kim is a distinguished materials scientist from the Republic of Korea, renowned for his expertise in ceramic engineering, fuel cell systems, and clean hydrogen technologies. He obtained both his bachelor’s and doctoral degrees in Ceramic Engineering from Yonsei University, Seoul. Dr. Kim began his professional career as a Principal Researcher at Hyundai Motor Corporation and later joined the Korea Institute of Energy Research (KIER), where he currently serves as Chief and Head of the National Hydrogen Hub Laboratory. He has also contributed to academia as an Associate Professor at the University of Science and Technology and serves on the Board of Directors of the Korean Hydrogen & New Energy Society. With 47 Scopus-indexed publications and 1,505 citations, Dr. Kim holds an h-index of 22, reflecting his strong influence in the field of solid oxide electrolysis cells (SOECs), solid oxide fuel cells (SOFCs), and high-temperature electrochemical systems. His work has appeared in top-tier journals such as Journal of Power Sources, Ceramics International, and Applied Energy. Beyond publications, Dr. Kim has been a key innovator in energy materials, contributing to over 70 patents in hydrogen production, electrochemical device engineering, and advanced fuel cell technologies, solidifying his leadership in advancing clean and sustainable hydrogen manufacturing research.

Profile: Scopus | ORCID | Google Scholar

Featured Publications

Kim, S. D., Hyun, S. H., Shin, M. Y., Lim, T. H., Hong, S. A., & Lim, H. C. (2005). Phase and microstructure stabilities of LiAlO₂ in molten Li/Na carbonate for molten carbonate fuel cells. Journal of Power Sources, 143(1–2), 24–29. Cited by 28 documents.

Hong, G., Kim, T. W., Kwak, M. J., Song, J., Choi, Y., Woo, S. K., & Kim, S. D. (2020). Composite electrodes of Ti-doped SrFeO₃–δ and LSGMZ electrolytes as both the anode and cathode in symmetric solid oxide fuel cells. Journal of Alloys and Compounds, 846, 156154. Cited by 27 documents.

Choi, H. J., Na, Y. H., Kwak, M., Kim, T. W., Seo, D. W., Woo, S. K., & Kim, S. D. (2017). Development of solid oxide cells by co-sintering of GDC diffusion barriers with LSCF air electrode. Ceramics International, 43(16), 13653–13660. Cited by 26 documents.

Choi, H. J., Kim, T. W., Na, Y. H., Seo, D. W., Woo, S. K., Huh, J. Y., & Kim, S. D. (2018). Enhanced electrochemical performance of metal-supported solid oxide fuel cells via an inner coating of Gd₀.₁Ce₀.₉O₂–δ nanosol in the porous NiFe-metal support. Journal of Power Sources, 406, 81–87. Cited by 25 documents.

Kim, S. D., Hyun, S. H., Lim, T. H., & Hong, S. A. (2004). Effective fabrication method of rod-shaped γ-LiAlO₂ particles for molten carbonate fuel cell matrices. Journal of Power Sources, 137(1), 24–29. Cited by 21 documents.

Vladimir Atanasov | Fuel Cell | Excellence in Research Award

Dr. Vladimir Atanasov | Fuel Cell | Excellence in Research Award

Team Leader at University of Stuttgart | Germany

Dr. Vladimir Milanov Atanasov is a distinguished researcher in polymer and membrane technology with more than 25 years of international experience in the field of chemical and polymer engineering. He currently serves as Team Leader for Polymer and Membrane Technology at the Institute of Chemical Process Engineering, University of Stuttgart. Born and educated in Bulgaria, he earned his M.Sc. in Organic and Analytical Chemistry from Sofia State University, followed by a Ph.D. under the supervision of Prof. Müllen at the Max Planck Institute for Polymer Research, Mainz. Dr. Atanasov has held several prestigious postdoctoral appointments, including at the MPI for Polymer Research, MPI for Solid State Research, and the University of Stuttgart, where his work focused on fuel cell and biomembrane applications. His expertise spans polymer electrolyte membrane (PEM) preparation, advanced polymerization techniques, post-modification methods, and organic synthesis, particularly in phosphonated and sulfonated fluoro-arylenes and functionalized lipids. He is skilled in a wide range of characterization techniques, including EIS, DMA, NMR, MALDI-ToF, GPC, DSC, and FTIR. Dr. Atanasov has authored 33 scientific documents, including 35 peer-reviewed papers, and holds three patents. His contributions have been cited over 1,181 times, and his current Scopus profile reflects an h-index of 16. His ongoing research focuses on the development and characterization of novel polymer electrolyte membranes for high-temperature proton exchange membrane fuel cells (HT-PEMFC), combining innovative materials and advanced film-forming techniques to enhance efficiency and durability in energy applications.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Atanasov, V., Knorr, N., Duran, R. S., Ingebrandt, S., Offenhäusser, A., & Knoll, W. (2005). Membrane on a chip: A functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophysical Journal, 89(3), 1780–1788. Cited by: 250

Schuster, M., de Araujo, C. C., Atanasov, V., Andersen, H. T., Kreuer, K. D., & Maier, J. (2009). Highly sulfonated poly (phenylene sulfone): Preparation and stability issues. Macromolecules, 42(8), 3129–3137. Cited by: 204

Atanasov, V., Lee, A. S., Park, E. J., Maurya, S., Baca, E. D., Fujimoto, C., Hibbs, M., & others. (2021). Synergistically integrated phosphonated poly (pentafluorostyrene) for fuel cells. Nature Materials, 20(3), 370–377. Cited by: 198

Lim, K. H., Lee, A. S., Atanasov, V., Kerres, J., Park, E. J., Adhikari, S., Maurya, S., & others. (2022). Protonated phosphonic acid electrodes for high power heavy-duty vehicle fuel cells. Nature Energy, 7(3), 248–259. Cited by: 162

Atanasov, V., Atanasova, P. P., Vockenroth, I. K., Knorr, N., & Köper, I. (2006). A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjugate Chemistry, 17(3), 631–637. Cited by: 94

Atanasov, V., & Kerres, J. (2011). Highly phosphonated polypentafluorostyrene. Macromolecules, 44(16), 6416–6423. Cited by: 93

Zafran Ullah | Photocatalyst | Best Researcher Award

Mr. Zafran Ullah | Photocatalyst | Best Researcher Award

Sunway University | Pakistan

Mr. Zafran Ullah is a dedicated PhD student at the School of Engineering, Sunway University, Malaysia, specializing in chemical engineering and sustainable chemical processes. He holds a Master’s degree in Chemical Engineering from Universitas Diponegoro (UNDIP), Indonesia, awarded through a fully funded UNDIP scholarship. With over four years of research experience in academia, Zafran has contributed significantly to the field, publishing more than eight articles in renowned international journals including Elsevier, Analytical Sciences, Springer, and The Journal of Biological and Chemical Luminescence. His research primarily focuses on biomass conversion into value-added chemicals via TiO₂ photocatalysis, bridging fundamental chemical engineering principles with applied sustainable technologies. He has completed and is engaged in three research projects, collaborating with five international researchers, and serves as a reviewer for multiple scientific journals. According to Scopus, he has 34 citations across 3 documents and an h-index of 2, reflecting the growing impact of his research contributions. Zafran’s work emphasizes innovation in green chemistry, photochemical catalysis, and industrially relevant biomass valorization, aiming to provide practical solutions for energy and chemical sustainability challenges. He actively participates in consultancy and collaborative research projects, contributing to knowledge dissemination through peer-reviewed publications and scientific collaborations. His ongoing studies and professional engagements demonstrate a strong commitment to advancing chemical engineering research with societal and environmental relevance.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Raza, M., Farooq, U., Khan, S. A., Ullah, Z., Khan, M. E., Ali, S. K., Bakather, O. Y., …. (2024). Preparation and spectrochemical characterization of Ni-doped ZnS nanocomposite for effective removal of emerging contaminants and hydrogen production: Reaction kinetics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124513. (Cited by 33)

Altaf, R., Ullah, Z., Darko, D. A., Iqbal, A., Khan, M. S., & Asif, M. (2022). Molecularly imprinted polymers for the detection of chlorpyrifos (an organophosphate pesticide). ASEAN Journal of Science and Engineering, 2(3), 257–266. (Cited by 11)

Jabbar, S., Khan, A. K., Hanif, H. M. B., Ammar, M., Ashraf, I., Khadija, A., Khalid, A., … Ullah, Z. (2022). The prevalence, severity and the contributive organizational factors of burnout syndrome among Pakistani physiotherapists. International Journal of Natural Medicine and Health Sciences, 1(3). (Cited by 6)

Khan, M. N., Jan, M. N., & Ullah, Z. (2023). Environmentally friendly protocol for the determination of sitagliptin phosphate in pharmaceutical preparations and biological fluids using l-tyrosine as a probe. Luminescence, 38(10), 1803–1813. (Cited by 4)

Khan, M. N., Zaman, N., Mursaleen, M., Naz, F., & Ullah, Z. (2022). Eco-friendly approach for determination of moxifloxacin in pharmaceutical preparations and biological fluids through fluorescence quenching of eosin Y. Analytical Sciences, 38(12), 1541–1547. (Cited by 2)

Ullah, Z., Ariyant, D., Simk, W., Aamir, A., Khan, M., Ulla, Y., & Kha, A. (2023). Advancements in the conversion of lingo biomass to glucose with photocatalysts. European Chemical Bulletin, 12, 16498–16515. (Cited by 1)

Yuqing Chen | Electrochemical | Best Researcher Award

Yuqing Chen | Electrochemical | Best Researcher Award

Associated Professor at Zhejiang Shuren University | China

Dr. Yuqing Chen is currently serves as a Distinguished Associate Researcher at the Institute of Interdisciplinary Sciences, Zhejiang Shuren University. She earned her Ph.D. in Advanced Energy Materials from Hunan University under the supervision of Professor Jilei Liu, a National Young Talent awardee and Vice Dean of the School of Materials Science and Engineering. Prior to this, she completed a joint Master’s program in Electrochemical Technology at Tsinghua University under Professor Xiangming He and obtained a Master’s degree in New Energy Materials and Devices from Wuhan University of Technology under Professor Quanyao Zhu. Her undergraduate studies were in Inorganic Nonmetallic Materials at Wuhan University of Engineering. Dr. Chen’s research focuses on new energy materials and devices, particularly on lithium-ion battery electrolyte design, solvation chemistry, and electrochemical safety. She previously worked as an electrolyte development engineer at Zhejiang Provincial Chemical Research Institute (Sinochem Blue Sky Group), where she designed novel solvent and additive molecules and evaluated battery safety under international standards. She currently leads teaching in university-level chemistry courses, energy chemistry curriculum development, and energy materials research. Dr. Chen has authored 10 SCI-indexed articles with a total impact factor of 150, holds three patents, co-authored one translated book, and has accumulated over 2,500 citations, with an h-index of 19. She has led national projects on high-performance and wide-temperature lithium-ion battery electrolytes and has received multiple honors including the Zhejiang Provincial Intellectual Property Award, the JEC 2021 Best Paper Award, National Scholarship, and other academic and research distinctions.

Profilie: Scopus | ORCID | Google Scholar

Featured Publications

Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., et al. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99.

Chen, Y., He, Q., Zhao, Y., Zhou, W., Xiao, P., Gao, P., Tavajohi, N., Tu, J., Li, B., et al. (2023). Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery. Nature Communications, 14(1), 8326.

Chen, Y., He, Q., Mo, Y., Zhou, W., Zhao, Y., Piao, N., Liu, C., Xiao, P., Liu, H., Li, B., et al. (2022). Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60° C. Advanced Energy Materials, 12(33), 2201631.

Kang, Y., Deng, C., Chen, Y., Liu, X., Liang, Z., Li, T., Hu, Q., Zhao, Y. (2020). Binder-free electrodes and their application for Li-ion batteries. Nanoscale Research Letters, 15(1), 112.

Mo, Y., Zhou, W., Wang, K., Xiao, K., Chen, Y., Wang, Z., Tang, P., Xiao, P., Gong, Y., et al. (2023). Engineering electrode/electrolyte interphase chemistry toward high-rate and long-life potassium ion full-cell. ACS Energy Letters, 8(2), 995–1002.

Zhou, W., He, B., Quan, L., Li, R., Chen, Y., Fan, C., Chen, S., Xu, C., Fan, X., Xing, L., et al. (2023). Binder chemistry dependent electrolyte reduction in potassium‐ion batteries: A successive, two‐step reduction way. Advanced Energy Materials, 13(2), 2202874.

 

 

Dechao Chen | Electrocatalysts | Best Researcher Award

Dr. Dechao Chen | Electrocatalysts | Best Researcher Award

Postdoctoral Researcher at Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences | China

Dr. Dechao Chen is a postdoctoral researcher at the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He has developed expertise in energy chemistry and environmental catalysis, with a strong focus on electrochemical devices and catalytic mechanisms. His academic journey has been marked by rigorous training and innovative contributions to advanced materials and sustainable catalytic systems. Dr. Chen has authored impactful publications in high-impact journals such as Advanced Materials, Nano Letters, Small, and Chemical Engineering Journal. His work explores critical areas including C–N coupling, ammonia synthesis, CO₂ reduction, and hydrogen production. He has also been awarded support from the China Postdoctoral Science Foundation to further develop single-atom catalyst research. Driven by curiosity and dedication, Dr. Chen aims to bridge fundamental science with practical applications to address pressing global energy and environmental challenges.

Professional Profile

Scopus | Google Scholar | ORCID

Education

Dr. Dechao Chen pursued his academic studies with a strong foundation in physics, materials science, and catalysis. He earned his Bachelor of Science degree in Physics and Information Engineering from Minnan Normal University, where he trained under the mentorship of Prof. Zhouan Zhou. His undergraduate work laid the groundwork for his interest in materials chemistry and catalysis. He then advanced his academic career at Hunan University, completing his Ph.D. in Materials Science and Engineering under the guidance of Prof. Yongwen Tan. During his doctoral studies, he focused on nanostructured metal compounds, electrocatalysis, and the development of novel energy conversion materials. His dissertation involved exploring nanoporous two-dimensional materials and electrocatalytic mechanisms for nitrogen reduction and hydrogen evolution. Dr. Chen’s educational journey provided him with extensive expertise in materials synthesis, advanced characterization techniques, and catalytic processes, shaping him into a skilled researcher capable of addressing challenges in sustainable energy.

Experience

Dr. Dechao Chen has gained valuable research experience through academic and institutional roles in materials science and electrochemistry. Currently, he serves as a postdoctoral researcher at the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, working under Prof. Lili Han. His postdoctoral research emphasizes surface stress regulation and electrocatalytic CO₂ reduction using single-atom catalysts, supported by funding from the China Postdoctoral Science Foundation. Prior to this, his doctoral research at Hunan University focused on nanoporous two-dimensional compounds with three-dimensional bicontinuous structures, as well as innovative strategies for scalable doping and alloying in transition metal dichalcogenides. He has also conducted collaborative work on gold- and ruthenium-based catalytic systems for nitrogen reduction and hydrogen production. With broad expertise in nanomaterials synthesis, structural analysis, and catalytic applications, Dr. Chen has established himself as a promising researcher in electrochemical energy conversion and environmental catalysis.

Awards and Honors

Dr. Dechao Chen has been recognized for his outstanding contributions to materials science and electrochemical catalysis through significant academic achievements. He received support from the prestigious China Postdoctoral Science Foundation to conduct research on surface stress regulation and CO₂ electroreduction using single-atom catalysts. His publications in highly ranked international journals, including Advanced Materials, Nano Letters, Small, and the Chemical Engineering Journal, serve as testament to his scholarly excellence and innovative contributions. His work has attracted recognition from the global scientific community, highlighting the relevance and originality of his research in energy chemistry and sustainable catalysis. While early in his career, his growing record of publications and funded research demonstrates his potential to achieve further honors and leadership roles in the future. Dr. Chen’s academic trajectory continues to establish him as an emerging figure in his field.

Research Focus

Dr. Dechao Chen’s research focuses on energy chemistry, environmental catalysis, and electrochemical devices. His work spans the development of advanced catalytic systems for C–N coupling, ammonia synthesis, water electrolysis, hydrogen evolution, and CO₂ reduction. He is particularly interested in the design and regulation of single-atom and dual-atom catalysts to optimize catalytic activity and selectivity. His doctoral and postdoctoral studies have also explored the synthesis of nanoporous two-dimensional metal compounds with bicontinuous three-dimensional structures, aiming to enhance surface area, electronic conductivity, and reaction kinetics. Additionally, he investigates the catalytic mechanisms underlying nitrogen reduction and hydrogen production, providing fundamental insights that guide material innovation. By combining advanced materials synthesis, state-of-the-art characterization techniques, and theoretical understanding, his research aims to address urgent global challenges in sustainable energy conversion and environmental remediation. Ultimately, Dr. Chen’s research contributes to advancing green chemistry solutions for next-generation energy technologies.

Publication top Notes

Rational strain engineering of single-atom ruthenium on nanoporous MoS₂ for highly efficient hydrogen evolution
Year: 2021
Citations: 344

Spontaneous Atomic Ruthenium Doping in Mo₂CTX MXene Defects Enhances Electrocatalytic Activity for the Nitrogen Reduction Reaction
Year: 2020
Citations: 320

Identifying Electrocatalytic Sites of the Nanoporous Copper–Ruthenium Alloy for Hydrogen Evolution Reaction in Alkaline Electrolyte
Year: 2020
Citations: 297*

Single-Atom Gold Isolated Onto Nanoporous MoSe₂ for Boosting Electrochemical Nitrogen Reduction
Year: 2022
Citations: 102

Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst
Year: 2023
Citations: 82

Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis
Year: 2020
Citations: 41

Conclusion

Dr. Dechao Chen is a highly suitable candidate for the Best Researcher Award. His strong record of publications in top-tier journals, independent research funding, and contributions to the fields of electrocatalysis and sustainable energy place him among the most promising young researchers in materials science. With continued emphasis on industrial translation, leadership development, and innovation beyond academia, he is well-positioned to become a leading figure in his discipline. His profile reflects both scientific excellence and future potential, making him a compelling choice for this recognition.