Liu Feng | Nanocatalytic | Best Researcher Award

Prof. Liu Feng | Nanocatalytic | Best Researcher Award

Head of Research Office at Yunnan Precious Metals Lab | China

Dr. Liu Feng is a distinguished researcher from China specializing in precious metal nanocatalytic materials, currently affiliated with the Yunnan Precious Metal Laboratory in Kunming City, Yunnan Province. He earned his doctoral degree and has established himself as a leading expert in advanced catalyst design and electrochemical energy conversion. With 87 published documents, 896 total citations, and an h-index of 15 on Scopus, Dr. Liu has made substantial contributions to the field of nanocatalysis and sustainable energy materials. His work primarily focuses on the synthesis, structural modulation, and performance optimization of noble metal-based catalysts for hydrogen evolution and oxygen evolution reactions in water-splitting systems. Among his representative publications are “Size optimization of IrOx nanoparticles synthesized by Br mediation for enhanced PEM water electrolysis” (Molecular Catalysis, 2024), “Atomic Strain Wave-Featured LaRuIr Nanocrystals: Achieving Simultaneous Enhancement of Catalytic Activity and Stability toward Acidic Water Splitting” (Small, 2024), and “Ruddlesden–Popper Sr4Ir3O10 Perovskite: A New Family for Water Splitting Driven by Interlayer Oxygen Migration” (Applied Catalysis B: Environmental, 2024). His additional works in Green Energy & Environment, Journal of Energy Chemistry, and Nano Research further highlight his innovative research on Ru-Ir-Mn oxide systems and bimetallic catalysts for efficient energy conversion. Dr. Liu’s research not only deepens the understanding of nanocatalyst mechanisms but also advances the development of durable and high-performance electrocatalytic materials for clean energy technologies.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Zhu, L., Zhang, M., Xu, J., Li, C., Yan, J., Zhou, G., Zhong, W., Hao, T., Song, J., & others. (2022). Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 21(6), 656–663. Cited by: 2,209

Li, C., Zhou, J., Song, J., Xu, J., Zhang, H., Zhang, X., Guo, J., Zhu, L., Wei, D., Han, G., & others. (2021). Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 6(6), 605–613. Cited by: 1,974

He, Z., Xiao, B., Liu, F., Wu, H., Yang, Y., Xiao, S., Wang, C., Russell, T. P., & Cao, Y. (2015). Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 9(3), 174–179. Cited by: 1,890

Kan, B., Li, M., Zhang, Q., Liu, F., Wan, X., Wang, Y., Ni, W., Long, G., Yang, X., & others. (2015). A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. Journal of the American Chemical Society, 137(11), 3886–3893. Cited by: 918

Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., Zuo, Y., Ni, W., Zhang, H., & others. (2015). Small-molecule solar cells with efficiency over 9%. Nature Photonics, 9(1), 35–41. Cited by: 901

 

Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Prof. Dr. Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Professor at Pontifical Catholic University of Rio de Janeiro | Brazil

Prof. Dr. Rogério Navarro Correia de Siqueira is a faculty member in the Department of Chemical and Materials Engineering at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), where he earned his Ph.D. and has served as an adjunct professor. His research spans nanomaterials synthesis, bio-based materials processing, and thermodynamic modeling of non-ideal systems, with significant contributions in the development of oxidized nanocatalysts supported by cellulose nanofibers for hydrogen generation, adsorption of transition metals from aqueous solutions, and the design of hybrid nanomaterials for energy storage and sustainable energy applications. Prof. Siqueira has led multiple projects, including two completed and two ongoing funded research initiatives, alongside consultancy experience and patent development, reflecting both academic and industrial engagement. He has published 26 papers in international journals indexed in Scopus and Web of Science, has served as guest editor for special issues in Minerals and Metals (MDPI), and actively collaborates with leading institutions such as TU-Berlin, UERJ, and UFOP on advanced nanocatalyst design and CO₂ capture modeling. According to Scopus, his work has been cited 167 times, and he has an h-index of 9, reflecting an emerging but growing impact in nanomaterials and energy transition research. His contributions to efficient computational methods for vapor–liquid equilibria, adsorption studies on functionalized nanocellulose, and catalytic hydrogen generation highlight his role in advancing sustainable materials science and metallurgical engineering applications. Prof. Siqueira continues to build international recognition through innovative approaches that bridge fundamental research with real-world energy solutions.

Profile: Scopus | ORCID

Feautured Publications

Braz, W. F., Teixeira, L. T., Navarro, R., & Pandoli, O. G. (2025). Nanocellulose application for metal adsorption and its effect on nanofiber thermal behavior. Metals, 15(8), 832.

Rego, A. S. C., Navarro, R. C. S., Brocchi, E. A., & Souza, R. F. M. (2024). Kinetic study on the thermal decomposition of iron (II) sulfate using a global optimization approach. Materials Chemistry and Physics, 304, 129869.

Moreira, P. H. L. R., Siqueira, R. N. C., & Vilani, C. (2024). A simple chemical equilibrium algorithm applied for single and multiple reaction systems. Computer Applications in Engineering Education, 32(3), 987–1004.

Teixeira, L. T., Lima, S. L. S. de, Rosado, T. F., Liu, L., Vitorino, H. A., dos Santos, C. C., Mendonça, J. P., Garcia, M. A. S., Siqueira, R. N. C., & da Silva, A. G. M. (2023). Sustainable cellulose nanofibers-mediated synthesis of uniform spinel Zn-ferrites nanocorals for high performances in supercapacitors. International Journal of Molecular Sciences, 24(11), 9169.

Teixeira, L. T., Braz, W. F., Siqueira, R. N. C., Pandoli, O. G., & Geraldes, M. C. (2021). Sulfated and carboxylated nanocellulose for Co²⁺ adsorption. Journal of Materials Research and Technology, 15, 123–135.

Guangsheng Song | Materials science | Best Researcher Award

Prof. Dr. Guangsheng Song | Materials science | Best Researcher Award

Academic leader at Anhui University of Technology, Australia.

Dr. Guangsheng Song, a renowned professor and science leader, specializes in materials science and engineering. Based at Anhui University of Technology, China, he has over two decades of expertise in developing advanced materials for sustainable applications. His research spans hydrogen separation membranes, light metal materials, and nanomaterials for energy storage. With a global academic footprint, Dr. Song has held significant roles across prestigious institutions in China, South Korea, New Zealand, Canada, and Australia. His innovative contributions have earned international recognition, driving breakthroughs in materials science.

Professional Profiles📖

Scopus

Education 🎓

Dr. Song’s academic journey reflects his commitment to advanced materials science. He completed his PhD in Materials Science and Engineering at Harbin Institute of Technology, China, in 1994, focusing on light metal materials and their applications. His postdoctoral studies at Canterbury University, New Zealand, from 2002 to 2004, allowed him to deepen his expertise in metallurgical and mechanical engineering. These academic pursuits laid the foundation for his subsequent pioneering research and professional achievements.

Professional Experience💼

Dr. Song’s career is marked by leadership roles across globally renowned institutions. Since 2017, he has served as a professor and science leader at Anhui University of Technology, advancing research in materials science. Previously, he was a senior scientist at CSIRO Manufacturing Flagship, Australia (2007–2016), contributing to innovative manufacturing technologies. His research experience includes roles as a research associate at McGill University, Canada (2004–2006), a postdoctoral fellow at Canterbury University, New Zealand (2002–2004), and a senior researcher at Yonsei University, South Korea (1999–2002). Earlier in his career, he was an associate professor at Northwestern Polytechnical University, China (1995–1999).

Research Focus 🔍

Dr. Song’s research addresses critical challenges in materials science. His work on hydrogen separation alloy membranes aims to develop efficient solutions for clean energy applications. He explores the design and application of light metal materials, focusing on their use in the aerospace and automotive industries. His studies on nanomaterials for energy storage and conversion devices seek to enhance renewable energy technologies. Additionally, he investigates the process-structure-property relationship and conducts engineering failure analysis to improve material performance and reliability.

Awards and Honors

Dr. Song’s contributions have been recognized with numerous accolades. He received the Outstanding Science Leader Award for his innovative research and the CSIRO Excellence in Manufacturing Research Award for his impact on advanced materials development. He has been acknowledged as a recognized reviewer for leading materials science journals and received the Excellence in International Collaboration Award for fostering global research partnerships. These honors underscore his influence in the field of materials science and engineering.

Conclusion ✅

Dr. Guangsheng Song is a compelling candidate for the Best Researcher Award. His expertise in hydrogen separation alloys and nanomaterials, combined with a remarkable international career and leadership role, positions him as a frontrunner in material science research. Addressing areas such as expanding publication reach and enhancing global collaborations could solidify his standing as a global leader in the field.

Publications to Noted📚

  1. First-principles study of hydrogen separation behavior in vanadium–aluminum alloys

  • Year: 2025

  1. Heterojunction design of ZnO/α-Fe2O3 with dual enhancement of ion/electron transport for energy storage

  • Citations: 1

  • Year: 2025

  1. Significant improvement of cold-rolling formability and hydrogen embrittlement resistance of Y-doped V alloy membranes for hydrogen separation

  • Year: 2025

  1. Research Progress in Alloying and Plastic Deformation of Ultralight Mg-Li Alloy

  • Year: 2025

  1. In-situ synthesis of Mn2SiO4 and MnxSi dual phases through solid-state reaction to improve the initial Coulombic efficiency of SiO anode for Lithium-Ion batteries

  • Year: 2025

  1. Effect of Asymmetric Rolling on the Microstructure, Texture, and Mechanical Properties of Mg–11Li–3Al–2Zn Alloy

  • Year: 2025

  1. Electrochemical exfoliated graphene-encapsulated SiO-TiO2 composites as anode materials for Li-ion batteries

  • Year: 2025

  1. Recent developments in coating investigation of LiNixMnyCo1-x-yO2 cathode material with promising (Li, Ni) rich layered for future generation lithium-ion batteries (Review)

  • Citations: 3

  • Year: 2025

  1. Preparation and electrochemical properties of Fe2O3 modified Si/SiO2 composites

  • Year: 2024

  1. Multi-Doping Exploration of (Sb, Bi and Ba) by First Principles on Ordered Zn-Si-P Compounds as High-Performance Anodes for Next-Generation Li-Ion Batteries (Open access)

  • Citations: 2

  • Year: 2024