Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Dr. Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Project Associate at National Institute of Technology Agartala | India

Dr. Dipankar Dey is a mechanical engineer specializing in advanced materials and tribology, recognized for his impactful studies on aluminum matrix composites reinforced with ceramic and recycled particles. His body of work, comprising 18 publications indexed in Scopus with 493 citations and an h-index of 15, addresses key challenges in the enhancement of wear resistance and mechanical integrity of lightweight metal composites. His research integrates experimental techniques and statistical optimization tools such as the grey-Taguchi and grey-fuzzy approaches to investigate friction, wear, and strength under diverse process parameters. Through extensive work on Al2024, Al7075, and other alloys, he has elucidated the role of TiB₂ and SiC reinforcement in improving tribological and structural characteristics, supporting applications in aerospace and automotive sectors. His recent studies on composites enhanced with recycled borosilicate glass align with sustainable engineering practices by reducing waste and resource consumption. Publishing in internationally reputed SCI journals, he has contributed novel methodologies for materials characterization and property optimization. Dr. Dey’s scholarly focus bridges experimental mechanics and environmental consciousness, advancing the frontiers of materials engineering and supporting industrial innovations for next-generation composite technologies.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Bhowmik, A., Dey, D., & Biswas, A. (2021). Comparative study of microstructure, physical and mechanical characterization of SiC/TiB₂ reinforced aluminium matrix composite. Silicon, 13(6), 2003–2010. Cited by: 99

Dey, D., Bhowmik, A., & Biswas, A. (2022). Effect of SiC content on mechanical and tribological properties of Al2024–SiC composites. Silicon, 14(1), 1–11. Cited by: 82

Bhowmik, A., Dey, D., & Biswas, A. (2022). Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB₂ dispersed aluminium matrix composite. Silicon, 14(3), 1133–1146. Cited by: 46

Dey, D., & Biswas, A. (2021). Comparative study of physical, mechanical and tribological properties of Al2024 alloy and SiC–TiB₂ composites. Silicon, 13(6), 1895–1906. Cited by: 42

Bhowmik, A., Dey, D., & Biswas, A. (2020). Tribological behaviour of aluminium–titanium diboride (Al7075–TiB₂) metal matrix composites prepared by stir casting process. Materials Today: Proceedings, 26, 2000–2004. Cited by: 42

Shuvam Saha | Stitched Composites | Best Researcher Award

Dr. Shuvam Saha | Stitched Composites | Best Researcher Award

Composites Engineer at M4 Engineering Inc. | United States

Dr. Shuvam Saha is a highly skilled researcher and engineer specializing in composite materials and structural manufacturing for aerospace applications. Holding a Ph.D. in Engineering with a concentration in Aerospace Engineering from Mississippi State University, he has focused his research on resin-infusion processes, stitched composites, and structural optimization for lightweight, high-strength aerospace components. His innovative patent-pending process, Heated Mold Z-Flow Aided Resin Transfer Molding, represents a major step forward in composite manufacturing efficiency and scalability. Dr. Saha’s research includes experimental and numerical analysis of through-thickness stitching, graphene-reinforced hybrid layers for cryogenic tanks, and advanced design of experiments approaches for material characterization. He has authored 11 peer-reviewed journal articles, 15 conference papers, and 2 patents under review, with his work widely cited and recognized internationally. His Scopus profile reports 109 citations, 23 documents, and an h-index of 7, reflecting the academic influence and sustained quality of his contributions. Beyond technical expertise, Dr. Saha has managed multi-million-dollar aerospace programs and collaborated with NASA, AFRL, and industry leaders to translate research innovations into manufacturable technologies. His integrated focus on design, process optimization, and real-world engineering applications positions him among the most promising early-career scientists contributing to the advancement of aerospace and composite materials research.

Profile : Scopus | Google Scholar

Featured Publications

Alaziz, R., Saha, S., Sullivan, R. W., & Tian, Z. (2021). Influence of 3-D periodic stitching patterns on the strain distributions in polymer matrix composites. Composite Structures, 278, 114690. (Cited by 24)

Saha, S., Sullivan, R. W., & Baker, M. L. (2021). Gas permeability of three-dimensional stitched carbon/epoxy composites for cryogenic applications. Composites Part B: Engineering, 216, 108847. (Cited by 23)

Saha, S., Sullivan, R. W., & Baker, M. L. (2023). Gas permeability mitigation of cryogenically cycled stitched composites using thin plies. Composite Structures, 304, 116352. (Cited by 20)

Saha, S., & Sullivan, R. W. (2019). Strain distributions in bonded composites using optical fibers and digital image correlation. Proceedings of the American Society for Composites – 34th Technical Conference, (Cited by 13)

Shah, A., Saha, S., & Sullivan, R. W. (2019). Investigation of composite bond thickness using optical fibers. Proceedings of the American Society for Composites – 34th Technical Conference, (Cited by 11)