Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Dr. Abdelrahman Salman | Corrosion Resistance | Advanced Surface Treatment Award

Researcher at Tomsk Polytechnic University | Russia

Dr. Abdelrahman Salman is a materials and nuclear engineering researcher whose work centers on developing advanced surface-treatment strategies for enhancing the corrosion resistance, stability, and functional performance of metallic alloys used in nuclear reactor systems. His research focuses on thin-film coating technologies, thermo-physical diagnostics, and nondestructive evaluation techniques that enable precise characterization of surface integrity under extreme operational conditions. He has engineered and tested thin-film layers that modify corrosion pathways in fast-reactor alloys, investigated adhesion behavior and microstructural evolution in protective coatings, and identified new corrosion-resistant phenomena in emerging materials. His development of a ThermoEMF-based diagnostic device has provided a novel method for real-time temperature monitoring of micro-scale surfaces, expanding analytical capabilities for thermal-mechanical behavior of coated materials. Through advanced methods such as SEM, XRD, XRF, ECT, sputtering deposition, and specialized NDT approaches, he analyzes degradation mechanisms critical to nuclear safety and component life-cycle management. His scholarly output includes 3 Scopus-indexed publications, 6 citations, and an h-index of 2, supported by active participation in over 15 technical conferences and multiple invited research presentations. His work continually integrates experimental innovation with reactor-relevant problem-solving, contributing valuable insights to thin-film engineering, corrosion mitigation, and materials diagnostics. Salman’s growing recognition in the field reflects his strong research capabilities and his commitment to developing robust surface-treatment technologies essential for next-generation nuclear energy systems.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Salman, A., Syrtanov, M., & Lider, A. (2025). High-temperature oxidation effect of protective thin layers Ta/Cr coatings on Zr-1Nb alloy for corrosion-resistant components of nuclear reactors. Materials Letters, 379, 137646.
Cited by: 4

Salman, A. M., Lider, A. M., & Lomygin, A. D. (2025). Surface treatment techniques and control methods for enhancing corrosion resistance and very thin films management in fast nuclear reactors. Results in Surfaces and Interfaces, 100468.
Cited by: 3

Salman, A. M., Kudiiarov, V. N., & Lider, A. M. (2025). Low resistivity measurement of chromium coatings on zirconium alloys E110 for the production of accident-resistant core components of nuclear reactors. Russian Physics Journal, 1–9.

Salman, A. M., Syrtanov, M. S., & Lider, A. M. (2024). Non-destructive testing of a Zr-1Nb zirconium alloy with a protective Cr/Mo thin layers coating for the production of corrosion-resistant components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

Salman, A. M., Kudiyarov, V. N., & Lider, A. M. (2024). Non-destructive techniques on zirconium alloy E110 with chromium coatings for the production of emergency-resistant core components of nuclear reactors. Perspektivnye Materialy Konstruktsionnogo i Funktsional’nogo Naznacheniya.

 

Yanhong Wang | Wear Resistant Coating | Best Researcher Award

Ms. Yanhong Wang | Wear Resistant Coating | Best Researcher Award

University of Science and Technology Beijing | China

Yanhong Wang is a metallurgical engineering researcher specializing in wear-resistant coatings for steel substrates, with a focus on advancing long-life materials that support low-carbon industrial transformation. Her work emphasizes the design, preparation, and performance optimization of coatings that enhance abrasion resistance under severe service conditions. Through her Scopus-indexed publication, “A Review of Wear-Resistant Coatings for Steel Substrates: Applications and Challenges” in Metals (2025), she provides a comprehensive assessment of coating technologies including thermal spray processes, laser cladding, chemical and physical vapor deposition, and emerging hybrid approaches. ORCID currently indexes 1 research document and an h-index of 1, reflecting her growing scholarly influence. Her research highlights the interplay between coating microstructure, bonding mechanisms, mechanical performance, and environmental durability, identifying key factors that determine coating reliability in high-wear environments. By analyzing failure modes, synergistic strengthening strategies, and the compatibility of coating materials with steel substrates, she contributes essential insights for designing next-generation protective layers. Her work also evaluates industrial applicability, cost-effectiveness, and the sustainability benefits of durable surface engineering solutions, positioning her research within the broader goals of carbon neutrality and reduced resource consumption. Through systematic knowledge integration, she provides valuable guidance for future research directions and industrial innovation in metallurgical coatings.

Profile : ORCID

Featured Publication

Wang, Y., Feng, C., Lin, T., Zhu, R., Zhang, J., Yang, H., Yi, S., He, J., Tu, M., & Wei, G. (2025). A review of wear-resistant coatings for steel substrates: Applications and challenges. Metals.

 

 

Xulong Ren | Surface Treatment | Best Researcher Award

Mr. Xulong Ren | Surface Treatment | Best Researcher Award

Guilin University of Electronic Technology | China

Mr. Xulong Ren is a developing metallurgical researcher whose work centers on high-energy beam surface treatment and microstructural modification of metallic materials, with particular emphasis on scanning electron beam polishing, in situ alloying, and beam-induced strengthening mechanisms. His research advances the understanding of temperature field behaviour, energy density optimization, and microstructural evolution during electron beam processing of alloys such as TC4, contributing to improved surface morphology, enhanced mechanical properties, and more precise control of material behaviour under high-energy input. He has produced a growing body of scientific work comprising 22 research documents, supported by 99 citations, and he maintains a Scopus h-index of 6, reflecting his emerging influence within the field. His publications document experimental and simulation-based approaches to optimize beam parameters, analyze rotational and radial thermal gradients, and investigate the microstructural responses of metals subjected to advanced surface treatment techniques. Through involvement in funded projects such as the Guangxi Natural Science Foundation and collaborations on national research initiatives, he has contributed to methodological improvements and innovative processing strategies for electron beam–assisted material modification. His work also includes analysis of beam–material interactions, ceramic–metal interface strengthening, and the design of polishing models for precision surface engineering. His contributions extend to research on nanostructured material polishing mechanisms and scanning beam fusion effects, reflecting a consistent focus on advancing industrially relevant metal surface engineering techniques. His expanding publication record, combined with ongoing research activity, positions him as a promising and impactful researcher in metallurgical process innovation.

Profile : Scopus

Featured Publications

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., Li, Y., & Su, Y. (2025). Temperature field simulation and experimental investigation for column-faced 45 steel via ultrafast electron beam scanning. Surface and Coatings Technology. (Cited: 4)

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., & Su, Y. (2025). Eutectic resolidification and ultrafast self-quenching of the microstructure in the surface layer of high-speed steel by scanning electron beam treatment. Vacuum. (Cited: 1)

Li, X., Yang, J., Ren, X., Song, J., Long, F., Qiu, M., Li, Y., & Su, Y. (2026). Analysis and experimental verification of the temperature field model for dynamic defocus electron beam processing of TC4 titanium alloy surfaces. International Journal of Thermal Sciences, 220(B).

Ren, X., Huang, X., Li, X., & Gao, S. (2025). Exploring the effect of beam current on the microstructure and properties of Vc/Ni alloying layer on 40Cr surface through electron beam surface alloying. Preprint.

Wei, D., Yang, F., Sui, X., Mo, Z., & Ren, X. (2024). Surface microstructure evolution and enhanced properties of Ti-6Al-4V using scanning electron beam. International Journal of Heat and Mass Transfer. (Cited: 1)

Muhammad Mubeen | Anti-Corrosion | Young Scientist Award

Dr. Muhammad Mubeen | Anti-Corrosion | Young Scientist Award

University of Science and Technology of China | China

Dr. Muhammad Mubeen is a highly motivated and accomplished researcher in the field of materials science and engineering, currently pursuing his Ph.D. at the University of Science and Technology of China, following an M.S. in Materials Science and Engineering from Beijing University of Chemical Technology and a B.Sc. in Metallurgy and Materials Engineering from Bahauddin Zakariya University, Multan, Pakistan. Mubeen has made significant contributions to corrosion-resistant coatings, nanomaterials, and advanced composite materials, authoring 25 documents with a total of 620 citations and an h-index of 12 according to Scopus. His key publications include studies on anti-corrosion self-healable epoxy coatings reinforced with Guanine-MRS@MoS2 heterostructures, heterostructured melamine resin spheres@GO epoxy composites for automotive applications (Chemical Engineering Journal, 2024), and the development of automated rust detection networks for steel structures (Archives of Civil and Mechanical Engineering, 2025). Mubeen’s research experience spans the synthesis and characterization of nanomaterials, fabrication of smart coatings for Zn-Al-Mg coated steel, and exploration of Nitinol alloys for biomedical applications. He has also actively engaged in professional internships at Pepsico, Inc., and PECS Industries, contributing to engineering, supply chain, and corporate affairs projects. His accolades include the Chinese Government Scholarship, PEEF Merit-Based Scholarship, and recognition for best research posters and interuniversity leadership. In addition to research, he has volunteered with organizations such as the Edhi Foundation and Bike Angel Association of China, reflecting his commitment to societal impact and STEM outreach.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Murtaza, H., Zhao, J., Tabish, M., Wang, J., Mubeen, M., Zhang, J., & Zhang, S. (2024). Protective and flame-retardant bifunctional epoxy-based nanocomposite coating by intercomponent synergy between modified CaAl-LDH and rGO. ACS Applied Materials & Interfaces, 16(10), 13114–13131.

Mubeen, M., Zhao, J., Tabish, M., Wang, J., Mahmood, M., Murtaza, H., & Jawad, M. (2024). Heterostructured melamine resin Spheres@GO reinforced epoxy composite achieving robust corrosion-resistance of Zn-Al-Mg coated steel for automotive applications. Chemical Engineering Journal, 499, 156070.

Mahmood, M., Mubeen, M., Wang, W., Tabish, M., Murtaza, H., & Jawad, M. (2025). Mechanically robust and self-healing protective coating for Zn-Al-Mg coated steel enhanced by benzotriazole-5 carboxylic acid intercalated MgAlCe ternary LDH. Progress in Organic Coatings, 201, 109107.

Flehan, A., Jinna, L., Tabish, M., Kumar, A., Mohammed, Y. A. Y. A., & Mubeen, M. (2023). Development of anti-corrosion and hydrophobicity of a nanostructured Ce-La film via the PDA post-treatment modification. Journal of Alloys and Compounds, 968, 172139.

Khalid, S., Mubeen, M., Tabish, M., Jawad, M., Malik, M. U., Ilyas, H. M. A., & others. (2025). When low-dimensional nanomaterials meet polymers: A promising configuration for flame retardancy and corrosion protection. Chemical Engineering Journal, 515, 163678.