Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Dr. Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Project Associate at National Institute of Technology Agartala | India

Dr. Dipankar Dey is a mechanical engineer specializing in advanced materials and tribology, recognized for his impactful studies on aluminum matrix composites reinforced with ceramic and recycled particles. His body of work, comprising 18 publications indexed in Scopus with 493 citations and an h-index of 15, addresses key challenges in the enhancement of wear resistance and mechanical integrity of lightweight metal composites. His research integrates experimental techniques and statistical optimization tools such as the grey-Taguchi and grey-fuzzy approaches to investigate friction, wear, and strength under diverse process parameters. Through extensive work on Al2024, Al7075, and other alloys, he has elucidated the role of TiB₂ and SiC reinforcement in improving tribological and structural characteristics, supporting applications in aerospace and automotive sectors. His recent studies on composites enhanced with recycled borosilicate glass align with sustainable engineering practices by reducing waste and resource consumption. Publishing in internationally reputed SCI journals, he has contributed novel methodologies for materials characterization and property optimization. Dr. Dey’s scholarly focus bridges experimental mechanics and environmental consciousness, advancing the frontiers of materials engineering and supporting industrial innovations for next-generation composite technologies.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Bhowmik, A., Dey, D., & Biswas, A. (2021). Comparative study of microstructure, physical and mechanical characterization of SiC/TiB₂ reinforced aluminium matrix composite. Silicon, 13(6), 2003–2010. Cited by: 99

Dey, D., Bhowmik, A., & Biswas, A. (2022). Effect of SiC content on mechanical and tribological properties of Al2024–SiC composites. Silicon, 14(1), 1–11. Cited by: 82

Bhowmik, A., Dey, D., & Biswas, A. (2022). Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB₂ dispersed aluminium matrix composite. Silicon, 14(3), 1133–1146. Cited by: 46

Dey, D., & Biswas, A. (2021). Comparative study of physical, mechanical and tribological properties of Al2024 alloy and SiC–TiB₂ composites. Silicon, 13(6), 1895–1906. Cited by: 42

Bhowmik, A., Dey, D., & Biswas, A. (2020). Tribological behaviour of aluminium–titanium diboride (Al7075–TiB₂) metal matrix composites prepared by stir casting process. Materials Today: Proceedings, 26, 2000–2004. Cited by: 42

Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Prof. Dr. Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Professor at Pontifical Catholic University of Rio de Janeiro | Brazil

Prof. Dr. Rogério Navarro Correia de Siqueira is a faculty member in the Department of Chemical and Materials Engineering at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), where he earned his Ph.D. and has served as an adjunct professor. His research spans nanomaterials synthesis, bio-based materials processing, and thermodynamic modeling of non-ideal systems, with significant contributions in the development of oxidized nanocatalysts supported by cellulose nanofibers for hydrogen generation, adsorption of transition metals from aqueous solutions, and the design of hybrid nanomaterials for energy storage and sustainable energy applications. Prof. Siqueira has led multiple projects, including two completed and two ongoing funded research initiatives, alongside consultancy experience and patent development, reflecting both academic and industrial engagement. He has published 26 papers in international journals indexed in Scopus and Web of Science, has served as guest editor for special issues in Minerals and Metals (MDPI), and actively collaborates with leading institutions such as TU-Berlin, UERJ, and UFOP on advanced nanocatalyst design and CO₂ capture modeling. According to Scopus, his work has been cited 167 times, and he has an h-index of 9, reflecting an emerging but growing impact in nanomaterials and energy transition research. His contributions to efficient computational methods for vapor–liquid equilibria, adsorption studies on functionalized nanocellulose, and catalytic hydrogen generation highlight his role in advancing sustainable materials science and metallurgical engineering applications. Prof. Siqueira continues to build international recognition through innovative approaches that bridge fundamental research with real-world energy solutions.

Profile: Scopus | ORCID

Feautured Publications

Braz, W. F., Teixeira, L. T., Navarro, R., & Pandoli, O. G. (2025). Nanocellulose application for metal adsorption and its effect on nanofiber thermal behavior. Metals, 15(8), 832.

Rego, A. S. C., Navarro, R. C. S., Brocchi, E. A., & Souza, R. F. M. (2024). Kinetic study on the thermal decomposition of iron (II) sulfate using a global optimization approach. Materials Chemistry and Physics, 304, 129869.

Moreira, P. H. L. R., Siqueira, R. N. C., & Vilani, C. (2024). A simple chemical equilibrium algorithm applied for single and multiple reaction systems. Computer Applications in Engineering Education, 32(3), 987–1004.

Teixeira, L. T., Lima, S. L. S. de, Rosado, T. F., Liu, L., Vitorino, H. A., dos Santos, C. C., Mendonça, J. P., Garcia, M. A. S., Siqueira, R. N. C., & da Silva, A. G. M. (2023). Sustainable cellulose nanofibers-mediated synthesis of uniform spinel Zn-ferrites nanocorals for high performances in supercapacitors. International Journal of Molecular Sciences, 24(11), 9169.

Teixeira, L. T., Braz, W. F., Siqueira, R. N. C., Pandoli, O. G., & Geraldes, M. C. (2021). Sulfated and carboxylated nanocellulose for Co²⁺ adsorption. Journal of Materials Research and Technology, 15, 123–135.