Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Dr. Dipankar Dey | Aluminium Matrix Composite | Best Researcher Award

Project Associate at National Institute of Technology Agartala | India

Dr. Dipankar Dey is a mechanical engineer specializing in advanced materials and tribology, recognized for his impactful studies on aluminum matrix composites reinforced with ceramic and recycled particles. His body of work, comprising 18 publications indexed in Scopus with 493 citations and an h-index of 15, addresses key challenges in the enhancement of wear resistance and mechanical integrity of lightweight metal composites. His research integrates experimental techniques and statistical optimization tools such as the grey-Taguchi and grey-fuzzy approaches to investigate friction, wear, and strength under diverse process parameters. Through extensive work on Al2024, Al7075, and other alloys, he has elucidated the role of TiB₂ and SiC reinforcement in improving tribological and structural characteristics, supporting applications in aerospace and automotive sectors. His recent studies on composites enhanced with recycled borosilicate glass align with sustainable engineering practices by reducing waste and resource consumption. Publishing in internationally reputed SCI journals, he has contributed novel methodologies for materials characterization and property optimization. Dr. Dey’s scholarly focus bridges experimental mechanics and environmental consciousness, advancing the frontiers of materials engineering and supporting industrial innovations for next-generation composite technologies.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Bhowmik, A., Dey, D., & Biswas, A. (2021). Comparative study of microstructure, physical and mechanical characterization of SiC/TiB₂ reinforced aluminium matrix composite. Silicon, 13(6), 2003–2010. Cited by: 99

Dey, D., Bhowmik, A., & Biswas, A. (2022). Effect of SiC content on mechanical and tribological properties of Al2024–SiC composites. Silicon, 14(1), 1–11. Cited by: 82

Bhowmik, A., Dey, D., & Biswas, A. (2022). Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB₂ dispersed aluminium matrix composite. Silicon, 14(3), 1133–1146. Cited by: 46

Dey, D., & Biswas, A. (2021). Comparative study of physical, mechanical and tribological properties of Al2024 alloy and SiC–TiB₂ composites. Silicon, 13(6), 1895–1906. Cited by: 42

Bhowmik, A., Dey, D., & Biswas, A. (2020). Tribological behaviour of aluminium–titanium diboride (Al7075–TiB₂) metal matrix composites prepared by stir casting process. Materials Today: Proceedings, 26, 2000–2004. Cited by: 42

Seyed Morteza Mirmohammadi | Thermoplastic Composites | Best Researcher Award-duplicate-1

Seyed Morteza Mirmohammadi | Thermoplastic Composites | Best Researcher Award

Islamic Azad University |  Iran

Dr. Seyed Morteza Mirmohammadi is an Iranian researcher whose academic and professional trajectory spans textile engineering, polymer-based composites, and industrial systems optimization. He earned his B.Sc. in Textile Engineering from Islamic Azad University, Kashan, followed by an M.Sc. in Industrial Engineering from Islamic Azad University. He is currently pursuing a Ph.D. in Textile Engineering at Islamic Azad University, alongside completing a DBA in Finance from Fanavaran Hakim, Iran, reflecting his multidisciplinary academic profile. His research focuses on advanced materials, particularly polymer-based composites and hybrid woven fabrics, with a strong emphasis on ballistic impact resistance and energy absorption in textile structures. He applies advanced optimization techniques such as Response Surface Methodology (RSM) and Analytic Hierarchy Process (AHP) to develop efficient design and management strategies in engineering systems. Mirmohammadi has presented at numerous national and international conferences, actively contributing to the fields of industrial engineering, composites, and textile technologies, and has published several scholarly works, including notable studies on ballistic impact resistance of hybrid Kevlar/Polypropylene woven fabric composites. He has also been engaged in academic workshops on strategic management and quality systems, aligning his technical expertise with organizational and managerial insights. His professional qualifications include certifications in internal auditing, occupational health and safety, CE marking and risk assessment, as well as marketing management. With advanced skills in research, academic writing, statistical modeling software (SPSS, MATLAB, MINITAB), and quality engineering, he has positioned himself as a versatile scholar and practitioner bridging the gap between materials science, textile engineering, and strategic industrial management.

Pofile: ORCID

Featured Publication

Mirmohammadi, S. M., Shaikhzadeh Najar, S., & Kamali Dolatabadi, M. (2025). Energy absorption of ballistic impact in hybrid Kevlar/Polypropylene woven fabric composites preloaded under simple shear mode: Response surface methodology modeling utilizing a Box–Behnken design. Polymer Composites.