Fu Lei | Corrosion Fatigue | Best Researcher Award

Prof. Fu Lei | Corrosion Fatigue | Best Researcher Award

Professor at Sichuan University of Science & Engineering | China

Professor Fu Lei, a distinguished materials scientist at Sichuan University of Science and Engineering, specializes in fatigue, fracture, and structural reliability of metallic systems. His research bridges experimental and computational mechanics, focusing on failure prediction, damage evolution, and fatigue-corrosion interactions in advanced alloys and composites. He has led more than 30 national and regional projects, notably under the National Natural Science Foundation of China, covering aerospace, nuclear, and new-energy applications. His Scopus record lists 32 documents, 127 citations, and an h-index of 7, demonstrating sustained scientific impact. His studies on hydrogen-induced fracture, micro-defect propagation, and microbiologically influenced corrosion have refined theoretical and experimental understanding of structural materials under coupled stresses. Beyond research, he has authored a monograph and contributed to developing fatigue-testing standards and additive-manufacturing methods for UAV composites and biomedical implants. Serving as Deputy Director of multiple provincial research centers, he fosters collaborative R&D between academia and industry, enabling technology transfer in functional materials and mechanical systems. Professor Fu’s integrated approach to mechanics, reliability engineering, and materials innovation underscores his global leadership and positions him as a top candidate for recognition under the Best Researcher Award.

Profiile : Scopus

Featured Publications

Fu, L., et al. (2025). Experimental study of the hydrogen fracture behavior of 30CrMo steel and simulation of hydrogen diffusion. JOM, [Advance online publication].

Fu, L., et al. (2025). Modification of graphene oxide composite coating on 7075 aluminum alloy and protection against Aspergillus niger corrosion. Anti-Corrosion Methods and Materials, [Advance online publication].

Fu, L., et al. (2025). Mechanics and long-term stability of porous titanium scaffolds with rhombic dodecahedrons. Journal of Materials Engineering and Performance, [Advance online publication].