Dr. Farid Ahmed | Supramolecular Chemistry | Best Researcher Award

Dr. Farid Ahmed | Supramolecular Chemistry | Best Researcher Award

Associate Researcher at Shenzhen University | Pakistan

Dr. Farid Ahmed, Ph.D., is a distinguished researcher in organic and supramolecular chemistry with a focus on functional materials, catalysis, and luminescent lanthanide-based systems. He is currently a Research Associate at the Institute for Advanced Study (IAS), Shenzhen University, China, where he continues his postdoctoral research on lanthanide-coordinated crown ether-modified DNA and related luminescent materials. He earned his Ph.D. in Organic Chemistry from the H.E.J. Research Institute of Chemistry, University of Karachi, Pakistan, where his doctoral research involved the synthesis and characterization of thioether-based supramolecules and the evaluation of their photophysical and biological properties under the supervision of Prof. Muhammad Raza Shah. Prior to that, he completed his M.Sc. in Organic Chemistry at the Federal Urdu University of Arts, Science and Technology, Karachi, and a B.Sc. in Pre-Engineering from the University of Karachi. Dr. Ahmed has authored 57 peer-reviewed publications with over 1,153 citations and an h-index of 20 (Scopus), including recent works on synergistic citrazinic acid-functionalized silver nanoparticles for environmental remediation, field-portable colorimetric assays for pharmaceutical detection, and advancements in lanthanide-doped luminescent supramolecular hydrogels. His expertise spans organic synthesis, coordination chemistry, COFs/MOFs, functional nanomaterials, photocatalysts, and energy storage materials. He is proficient in advanced spectroscopic, microscopic, and computational techniques, including NMR, MS, FTIR, TEM, AFM, SEM, and Python/MATLAB-based data analysis. Dr. Ahmed has presented his work at numerous international symposia and received merit-based scholarships during his academic career, reflecting his dedication to innovative chemical research and applications.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Ahmed, F., & Xiong, H. (2021). Recent developments in 1, 2, 3-triazole-based chemosensors. Dyes and Pigments, 185, 108905. Cited by 119

Imran, M., Shah, M. R., Ullah, F., Ullah, S., Elhissi, A. M. A., Nawaz, W., Ahmed, F., … (2016). Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. International Journal of Pharmaceutics, 505(1-2), 122–132. Cited by 89

Hussain, M. M., Khan, W. U., Ahmed, F., Wei, Y., & Xiong, H. (2023). Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chemical Engineering Journal, 465, 143010. Cited by 79

Ahmed, F., Kabir, H., & Xiong, H. (2020). Dual colorimetric sensor for Hg²⁺/Pb²⁺ and an efficient catalyst based on silver nanoparticles mediating by the root extract of Bistorta amplexicaulis. Frontiers in Chemistry, 8, 591958. Cited by 79

ul Ain, N., Anis, I., Ahmed, F., Shah, M. R., Parveen, S., Faizi, S., & Ahmed, S. (2018). Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sensors and Actuators B: Chemical, 265, 617–624. Cited by 67

Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Prof. Dr. Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Professor at Pontifical Catholic University of Rio de Janeiro | Brazil

Prof. Dr. Rogério Navarro Correia de Siqueira is a faculty member in the Department of Chemical and Materials Engineering at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), where he earned his Ph.D. and has served as an adjunct professor. His research spans nanomaterials synthesis, bio-based materials processing, and thermodynamic modeling of non-ideal systems, with significant contributions in the development of oxidized nanocatalysts supported by cellulose nanofibers for hydrogen generation, adsorption of transition metals from aqueous solutions, and the design of hybrid nanomaterials for energy storage and sustainable energy applications. Prof. Siqueira has led multiple projects, including two completed and two ongoing funded research initiatives, alongside consultancy experience and patent development, reflecting both academic and industrial engagement. He has published 26 papers in international journals indexed in Scopus and Web of Science, has served as guest editor for special issues in Minerals and Metals (MDPI), and actively collaborates with leading institutions such as TU-Berlin, UERJ, and UFOP on advanced nanocatalyst design and CO₂ capture modeling. According to Scopus, his work has been cited 167 times, and he has an h-index of 9, reflecting an emerging but growing impact in nanomaterials and energy transition research. His contributions to efficient computational methods for vapor–liquid equilibria, adsorption studies on functionalized nanocellulose, and catalytic hydrogen generation highlight his role in advancing sustainable materials science and metallurgical engineering applications. Prof. Siqueira continues to build international recognition through innovative approaches that bridge fundamental research with real-world energy solutions.

Profile: Scopus | ORCID

Feautured Publications

Braz, W. F., Teixeira, L. T., Navarro, R., & Pandoli, O. G. (2025). Nanocellulose application for metal adsorption and its effect on nanofiber thermal behavior. Metals, 15(8), 832.

Rego, A. S. C., Navarro, R. C. S., Brocchi, E. A., & Souza, R. F. M. (2024). Kinetic study on the thermal decomposition of iron (II) sulfate using a global optimization approach. Materials Chemistry and Physics, 304, 129869.

Moreira, P. H. L. R., Siqueira, R. N. C., & Vilani, C. (2024). A simple chemical equilibrium algorithm applied for single and multiple reaction systems. Computer Applications in Engineering Education, 32(3), 987–1004.

Teixeira, L. T., Lima, S. L. S. de, Rosado, T. F., Liu, L., Vitorino, H. A., dos Santos, C. C., Mendonça, J. P., Garcia, M. A. S., Siqueira, R. N. C., & da Silva, A. G. M. (2023). Sustainable cellulose nanofibers-mediated synthesis of uniform spinel Zn-ferrites nanocorals for high performances in supercapacitors. International Journal of Molecular Sciences, 24(11), 9169.

Teixeira, L. T., Braz, W. F., Siqueira, R. N. C., Pandoli, O. G., & Geraldes, M. C. (2021). Sulfated and carboxylated nanocellulose for Co²⁺ adsorption. Journal of Materials Research and Technology, 15, 123–135.