Dr. Mahmoud Afshari | Direct Metal Deposition | Best Researcher Award
Adjunct Professor at Ministry of Education of the Islamic Republic of Iran | Iran
Dr. Mahmoud Afshari’s research focuses on the integration of additive manufacturing, welding technologies, and composite materials design to advance high-precision fabrication methods in modern engineering. His body of work explores the mechanics, thermodynamics, and microstructural behavior of materials subjected to advanced manufacturing processes. Through the development of laser additive manufacturing models and friction stir welding simulations, Dr. Afshari has contributed to optimizing the thermal and mechanical performance of alloys such as Inconel 718, Ti-6Al-4V, and Al-Mg systems. His investigations have extended into polymer nanocomposites and fused filament fabrication (FFF), enhancing tensile modulus, hardness, and impact resistance through process-parameter optimization. His research outputs-comprising 30 Scopus-indexed publications with 168 citations and an h-index of 8-reflect rigorous experimentation combined with computational modeling. Notably, his recent articles in high-impact journals like Optics and Laser Technology, Journal of Molecular Structure, and Journal of Materials Science: Materials in Electronics highlight his expertise in material characterization, heat-transfer simulation, and nanostructure control. Alongside his scholarly publications, Dr. Afshari’s patents on advanced thermal systems and automated machinery demonstrate his applied research orientation and industry relevance. His scientific productivity, innovation in simulation-based design, and multidomain mastery exemplify excellence in metallurgical and manufacturing research, marking him as a strong candidate for the Best Researcher Award.
Profiles : Scopus | ORCID | Google Scholar
Featured Publications
Afshari, H., Taher, F., Alavi, S. A., Afshari, M., Samadi, M. R., & Allahyari, F. (2024). Studying the effects of FDM process parameters on the mechanical properties of parts produced from PLA using response surface methodology. Colloid and Polymer Science, 302(6), 955–970. Cited by: 26
Afshari, M., Bakhshi, S., Samadi, M. R., & Afshari, H. (2023). Optimizing the mechanical properties of TiO₂/PA12 nano-composites fabricated by SLS 3D printing. Polymer Engineering & Science, 63(1), 267–280. Cited by: 26
Afshari, M., Hamzekolaei, H. G., Mohammadi, N., Yazdanshenas, M., … (2023). Investigating the effect of laser cladding parameters on the microstructure, geometry and temperature changes of Inconel 718 superalloy using the numerical and experimental approaches. Materials Today Communications, 35, 106329. Cited by: 25
Taher, F., Afshari, M., Houmani, A., Samadi, M. R., Bakhshi, S., & Afshari, H. (2024). Simultaneous enhancement of the impact strength and tensile modulus of PP/EPDM/TiO₂ nanocomposite fabricated by fused filament fabrication. Colloid and Polymer Science, 302(3), 393–407. Cited by: 15
Hardani, H., Afshari, M., Samadi, M. R., Afshari, H., & López, S. A. (2025). An enhancement in the tensile modulus and bending resistance of polylactic acid/carbon nanotube composite by optimizing FFF process parameters. Journal of Thermoplastic Composite Materials, 38(4), 1379–1403. Cited by: 13