Yan Zhang | Green Building | Best Researcher Award

Dr. Yan Zhang | Green Building | Best Researcher Award

Lecturer at Shanghai Polytechnic University | China

Dr. Yan Zhang is a Lecturer at Shanghai Polytechnic University, School of Resources and Environmental Engineering, specializing in green building materials. He completed his Bachelor of Chemistry at Xinyang Normal University, followed by a Master’s degree in Organic Chemistry and a Ph.D. in Agricultural Pharmacy at Nankai University. Since 2020, he has been engaged in teaching and research at Shanghai Polytechnic University. His work focuses on developing sustainable materials, particularly silica-encapsulated n-octadecane phase change microcapsules, which demonstrate high phase change enthalpy (~125 J/g), excellent thermal stability (185.2°C), and outstanding cycling performance. When integrated into cement boards, these microcapsules reduce thermal conductivity by 41.14% and temperature fluctuation by 21.9%, offering an innovative energy-saving solution for construction. He has successfully completed several funded research projects, including the National Natural Science Foundation of China, the Shanghai Science and Technology Project  and the Shanghai Sailing Program, and contributed to 5 industry consultancy projects. His scholarly output includes 192 documents, cited 4,654 times according to Scopus, with an h-index of 33. He has published 10 SCI/Scopus-indexed journals, authored one book (ISBN available), and holds two patents under process. His contributions have been widely recognized in the field of eco-friendly construction materials, reflecting a strong blend of fundamental research, practical applications, and commitment to sustainable innovation

Profile: Scopus | ORCID

Feautured Publications

Tan, Y., Li, P., Yao, Y., Li, H., Zhong, J., Wu, J., Zhang, Y., & Wang, J. (2025). Green preparation and performance research of n-octadecane@silica phase change microcapsules for building energy conservation. Construction and Building Materials, 425, 143847.

Yao, Y., Li, H., Li, P., Tan, Y., Zhang, Y., & Wang, J. (2025). High-performance dual-network wood-based ionic conductive hydrogel for supercapacitors and sensitive sensors. Energy Technology, 13(10), 1501301.

Zhang, Y., Wu, J., Dang, S., Zhou, S., Wang, J., & Wang, R. (2024). Design, synthesis, and insecticidal activities of the novel sulfur-containing meta-amide compounds as potential pesticides. Journal of Chemical Research, 48(3), 1234629.

Wu, J., Dang, S., Zhang, Y., & Zhou, S. (2024). Novel meta-diamide compounds containing sulfide derivatives were designed and synthesized as potential pesticides. Molecules, 29(6), 1337.

Zhang, Y., Shang, J., Li, H., Liu, H., Song, H., Wang, B., & Li, Z. (2020). Synthesis of novel N-pyridylpyrazole derivatives containing 1,2,4-oxadiazole moiety via 1,3-dipolar cycloaddition and their structures and biological activities. Chinese Chemical Letters, 31(5), 1423–1430.

Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Prof. Dr. Rogério Navarro Correia de Siqueira | Sustainable Nanomaterials | Best Researcher Award

Professor at Pontifical Catholic University of Rio de Janeiro | Brazil

Prof. Dr. Rogério Navarro Correia de Siqueira is a faculty member in the Department of Chemical and Materials Engineering at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), where he earned his Ph.D. and has served as an adjunct professor. His research spans nanomaterials synthesis, bio-based materials processing, and thermodynamic modeling of non-ideal systems, with significant contributions in the development of oxidized nanocatalysts supported by cellulose nanofibers for hydrogen generation, adsorption of transition metals from aqueous solutions, and the design of hybrid nanomaterials for energy storage and sustainable energy applications. Prof. Siqueira has led multiple projects, including two completed and two ongoing funded research initiatives, alongside consultancy experience and patent development, reflecting both academic and industrial engagement. He has published 26 papers in international journals indexed in Scopus and Web of Science, has served as guest editor for special issues in Minerals and Metals (MDPI), and actively collaborates with leading institutions such as TU-Berlin, UERJ, and UFOP on advanced nanocatalyst design and CO₂ capture modeling. According to Scopus, his work has been cited 167 times, and he has an h-index of 9, reflecting an emerging but growing impact in nanomaterials and energy transition research. His contributions to efficient computational methods for vapor–liquid equilibria, adsorption studies on functionalized nanocellulose, and catalytic hydrogen generation highlight his role in advancing sustainable materials science and metallurgical engineering applications. Prof. Siqueira continues to build international recognition through innovative approaches that bridge fundamental research with real-world energy solutions.

Profile: Scopus | ORCID

Feautured Publications

Braz, W. F., Teixeira, L. T., Navarro, R., & Pandoli, O. G. (2025). Nanocellulose application for metal adsorption and its effect on nanofiber thermal behavior. Metals, 15(8), 832.

Rego, A. S. C., Navarro, R. C. S., Brocchi, E. A., & Souza, R. F. M. (2024). Kinetic study on the thermal decomposition of iron (II) sulfate using a global optimization approach. Materials Chemistry and Physics, 304, 129869.

Moreira, P. H. L. R., Siqueira, R. N. C., & Vilani, C. (2024). A simple chemical equilibrium algorithm applied for single and multiple reaction systems. Computer Applications in Engineering Education, 32(3), 987–1004.

Teixeira, L. T., Lima, S. L. S. de, Rosado, T. F., Liu, L., Vitorino, H. A., dos Santos, C. C., Mendonça, J. P., Garcia, M. A. S., Siqueira, R. N. C., & da Silva, A. G. M. (2023). Sustainable cellulose nanofibers-mediated synthesis of uniform spinel Zn-ferrites nanocorals for high performances in supercapacitors. International Journal of Molecular Sciences, 24(11), 9169.

Teixeira, L. T., Braz, W. F., Siqueira, R. N. C., Pandoli, O. G., & Geraldes, M. C. (2021). Sulfated and carboxylated nanocellulose for Co²⁺ adsorption. Journal of Materials Research and Technology, 15, 123–135.