Tianjie Qiu | Electrochemical Energy | Editorial Board Member

Dr. Tianjie Qiu | Electrochemical Energy | Editorial Board Member

Research Assistant at Peking University | China

Dr. Tianjie Qiu is an emerging leader in advanced materials research, distinguished by 2,075 citations, 25 Scopus-indexed publications, and an h-index of 17, reflecting strong global impact in electrocatalysis and energy storage. His work focuses on rationally engineered ruthenium-based nanocomposites derived from metal-organic frameworks, enabling highly porous structures with exceptional hydrogen and oxygen evolution activity for efficient water splitting. Through innovative alloy modulation, heterostructure formation, and confinement within B/N co-doped carbon nanotubes, he has advanced fundamental understanding of catalytic mechanisms, validated through rigorous experimental–theoretical correlation. His ESI Highly Cited Papers in leading journals such as Nano Energy, ACS Energy Letters, and Angewandte Chemie highlight the significance of his discoveries in tuning active sites, optimizing charge transport pathways, and enhancing catalytic durability. In parallel, he has made notable contributions to potassium-ion battery development by constructing nitrogen-doped microporous carbon superstructures derived from MOF precursors, elucidating adsorption energetics, multi-element doping effects, and structure-driven ion storage enhancements. His work integrates materials design, structural analysis, and electrochemical modeling to deliver high-capacity, high-rate anode systems. Additionally, his influential reviews on MOF-derived materials and graphene-based systems have served as authoritative resources for the broader research community. Dr. Qiu’s consistent high-impact outputs, cross-disciplinary expertise, and ability to bridge nanoscale design with practical energy applications establish him as a strong and deserving candidate for the Editorial Board Member.

Profiles : Scopus | Google Scholar

Featured Publications

Liang, Z., Zhao, R., Qiu, T., Zou, R., & Xu, Q. (2019). Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 1(1), 100001. (Cited by: 532)

Qiu, T., Liang, Z., Guo, W., Tabassum, H., Gao, S., & Zou, R. (2020). Metal–organic framework-based materials for energy conversion and storage. ACS Energy Letters, 5(2), 520–532. (Cited by: 488)

Wang, D. G., Qiu, T., Guo, W., Liang, Z., Tabassum, H., Xia, D., & Zou, R. (2021). Covalent organic framework-based materials for energy applications. Energy & Environmental Science, 14(2), 688–728. (Cited by: 351)

Qiu, T., Gao, S., Liang, Z., Wang, D. G., Tabassum, H., Zhong, R., & Zou, R. (2021). Pristine hollow metal–organic frameworks: Design, synthesis and application. Angewandte Chemie International Edition, 60(32), 17314–17336. (Cited by: 219)

Qiu, T., Liang, Z., Guo, W., Gao, S., Qu, C., Tabassum, H., Zhang, H., Zhu, B., & Zou, R. (2019). Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy, 58, 1–10. (Cited by: 217)

 

Zhi Zong | Computational Mechanics | Best Researcher Award

Prof. Dr. Zhi Zong | Computational Mechanics | Best Researcher Award

Professor at Fuyao University of Science and Technology | China

Prof. Dr. Zhi Zong is a leading researcher whose work integrates structural mechanics, fluid dynamics, computational modeling, and probabilistic engineering to advance the understanding of complex marine and mechanical systems. With 5,620 citations, 334 research documents, and a Scopus h-index of 38, his publications demonstrate both volume and influence within international scientific communities. His contributions include formulating high-accuracy Differential Quadrature (DQ) computational methods, such as localized, complex, and variable-order DQ techniques, which have improved the numerical simulation capabilities used in ocean engineering, ship mechanics, and structural analysis. He has made pioneering advances in uncertainty quantification, notably by identifying the variability of ship structural vibrations caused by geometric imperfections and by developing an asymptotically unbiased entropy estimator for probability distribution modeling-an outcome that has strengthened probabilistic mechanics applications. His Random Pore Model for sea ice represents an important development in capturing realistic mechanical and physical behaviors of ice, contributing to engineering design, climate studies, and environmental modeling. Beyond these theoretical achievements, Professor Zong has authored over 230 SCI-indexed papers and several specialized monographs addressing complex topics such as underwater explosion modeling, isolated water waves, and bubble dynamics. His research has been incorporated into practical marine engineering solutions and serves as a foundation for ongoing advancements in computational methods and ocean systems design. His body of work demonstrates consistent innovation, scientific rigor, and global relevance, making him a strong candidate for recognition under the Best Researcher Award.

Profiles : Scopus | Google Scholar

Featured Publications

Liu, M. B., Liu, G. R., Lam, K. Y., & Zong, Z. (2003). Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 30(2), 106–118. Cited by: 370.

Liu, M. B., Liu, G. R., Zong, Z., & Lam, K. Y. (2003). Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Computers & Fluids, 32(3), 305–322. Cited by: 324.

Zong, Z., & Zhang, Y. (2009). Advanced differential quadrature methods. Chapman and Hall/CRC. Cited by: 259.

Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., & Shu, C. (2015). An SPH model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, 283, 169–188. Cited by: 257.

Zhang, Y. Y., Wang, C. M., Duan, W. H., Xiang, Y., & Zong, Z. (2009). Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology, 20(39), 395707. Cited by: 155.