Syeda Naveed Kazmi | Fluid Mechanics | Best Researcher Award
Lecturer at Mirpur University of Science and Technology | Pakistan
Dr. Syeda Naveed Kazmi is a Senior Lecturer in Mathematics at Mirpur University of Science and Technology (MUST), Pakistan, specializing in heat transfer analysis for peristaltic transport of Newtonian and non-Newtonian nanofluids. She completed her Ph.D. in Mathematics from COMSATS University Islamabad, following an M.Sc. from the University of Azad Jammu & Kashmir. Dr. Kazmi’s research focuses on fluid mechanics, computational fluid dynamics, and nanofluid heat transfer, with a particular emphasis on peristaltic transport mechanisms. She has authored several publications in international journals, including “Entropy generation analysis for hybrid nanofluid mobilized by peristalsis with an inclined magnetic field” in Advances in Mechanical Engineering and “Peristaltic flow under the effects of tilted magnetic field: enhancing heat transfer using graphene nanoparticles” in the International Journal of Modelling and Simulation. Additionally, her work on “Thermal analysis of hybrid nanoliquid containing iron-oxide (Fe3O4) and copper (Cu) nanoparticles in an enclosure” was published in Alexandria Engineering Journal. Her contributions to the field have been recognized internationally, and she continues to advance research in the areas of nanofluid dynamics and heat transfer. Dr. Kazmi’s academic journey reflects a commitment to excellence in research and education in applied mathematics.
Profile: ORCID | Google Scholar
Feautured Publications
Kazmi, S. N., Haq, R. U., & Mekkaoui, T. (2017). Thermal management of water based SWCNTs enclosed in a partially heated trapezoidal cavity via FEM. International Journal of Heat and Mass Transfer, 112, 972–982. Cited by 93.
Qin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., … Kazmi, S. N. (2017). Synthesis and mechanistic studies of curcumin analog‐based oximes as potential anticancer agents. Chemical Biology & Drug Design, 90(3), 443–449. Cited by 47.
Kazmi, S. N., Hussain, A., Rehman, K. U., & Shatanawi, W. (2024). Thermal analysis of hybrid nanoliquid contains iron-oxide (Fe3O4) and copper (Cu) nanoparticles in an enclosure. Alexandria Engineering Journal, 101, 176–185. Cited by 8.
Kazmi, S. N., Abbasi, F. M., & Shehzad, S. A. (2023). An electroosmotic peristaltic flow of graphene-lubrication oil nanofluid through a symmetric channel. Advances in Mechanical Engineering, 15(6), 16878132231177956. Cited by 5.
Kazmi, S. N., Abbasi, F. M., & Iqbal, J. (2024). Double diffusive convection for MHD peristaltic movement of Carreau nanofluid with Hall effects. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems. Cited by 3.