Dr. Farid Ahmed | Supramolecular Chemistry | Best Researcher Award

Dr. Farid Ahmed | Supramolecular Chemistry | Best Researcher Award

Associate Researcher at Shenzhen University | Pakistan

Dr. Farid Ahmed, Ph.D., is a distinguished researcher in organic and supramolecular chemistry with a focus on functional materials, catalysis, and luminescent lanthanide-based systems. He is currently a Research Associate at the Institute for Advanced Study (IAS), Shenzhen University, China, where he continues his postdoctoral research on lanthanide-coordinated crown ether-modified DNA and related luminescent materials. He earned his Ph.D. in Organic Chemistry from the H.E.J. Research Institute of Chemistry, University of Karachi, Pakistan, where his doctoral research involved the synthesis and characterization of thioether-based supramolecules and the evaluation of their photophysical and biological properties under the supervision of Prof. Muhammad Raza Shah. Prior to that, he completed his M.Sc. in Organic Chemistry at the Federal Urdu University of Arts, Science and Technology, Karachi, and a B.Sc. in Pre-Engineering from the University of Karachi. Dr. Ahmed has authored 57 peer-reviewed publications with over 1,153 citations and an h-index of 20 (Scopus), including recent works on synergistic citrazinic acid-functionalized silver nanoparticles for environmental remediation, field-portable colorimetric assays for pharmaceutical detection, and advancements in lanthanide-doped luminescent supramolecular hydrogels. His expertise spans organic synthesis, coordination chemistry, COFs/MOFs, functional nanomaterials, photocatalysts, and energy storage materials. He is proficient in advanced spectroscopic, microscopic, and computational techniques, including NMR, MS, FTIR, TEM, AFM, SEM, and Python/MATLAB-based data analysis. Dr. Ahmed has presented his work at numerous international symposia and received merit-based scholarships during his academic career, reflecting his dedication to innovative chemical research and applications.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Ahmed, F., & Xiong, H. (2021). Recent developments in 1, 2, 3-triazole-based chemosensors. Dyes and Pigments, 185, 108905. Cited by 119

Imran, M., Shah, M. R., Ullah, F., Ullah, S., Elhissi, A. M. A., Nawaz, W., Ahmed, F., … (2016). Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. International Journal of Pharmaceutics, 505(1-2), 122–132. Cited by 89

Hussain, M. M., Khan, W. U., Ahmed, F., Wei, Y., & Xiong, H. (2023). Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chemical Engineering Journal, 465, 143010. Cited by 79

Ahmed, F., Kabir, H., & Xiong, H. (2020). Dual colorimetric sensor for Hg²⁺/Pb²⁺ and an efficient catalyst based on silver nanoparticles mediating by the root extract of Bistorta amplexicaulis. Frontiers in Chemistry, 8, 591958. Cited by 79

ul Ain, N., Anis, I., Ahmed, F., Shah, M. R., Parveen, S., Faizi, S., & Ahmed, S. (2018). Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sensors and Actuators B: Chemical, 265, 617–624. Cited by 67

Abrar Hussain | Synthetic Chemistry | Best Researcher Award

Mr. Abrar Hussain | Synthetic Chemistry | Best Researcher Award

Research Assistant at University of Science and Technology (UST) | South Korea

Mr. Abrar Hussain is a Pakistani chemist currently serving as a Research Assistant at the Korea Atomic Energy Research Institute (KAERI), South Korea. He earned his Master of Science in Chemistry from the National University of Sciences and Technology (NUST), Islamabad, graduating with distinction for his thesis on the synthesis and biological screening of novel Schiff bases, and completed his Bachelor of Science in Chemistry at the University of Sargodha. His research spans synthetic, environmental, and polymer chemistry, focusing on the development of nanomaterials, electrochemical sensors, and biomaterials for environmental and biomedical applications. Hussain has authored and co-authored multiple publications in leading journals, including the Journal of Environmental Chemical Engineering, European Polymer Journal, Chemosphere, and Microchemical Journal, with additional papers under review in top-tier outlets such as the International Journal of Hydrogen Energy and Polymer Reviews. His notable works explore nanocomposite hydrogels, fluorescence-based detection technologies, and machine learning-driven environmental monitoring. According to his Scopus profile, he has accumulated 36 citations from 13 documents with an h-index of 4, reflecting his growing influence in multidisciplinary research. He has actively participated in international conferences and received several honors, including the Best Researcher of the Year Award from UST-KAERI. Professionally, he is affiliated with the American Chemical Society (ACS) and is recognized for his collaborative research contributions bridging chemistry, materials science, and environmental sustainability.

Profile: Scopus | Google Scholar

Feautured Publications

Saleem, M., Hussain, A., Rauf, M., Khan, S. U., Haider, S., Hanif, M., Rafiq, M., et al. (2025). Ratiometric fluorescence and chromogenic probe for trace detection of selected transition metals. Journal of Fluorescence, 35(3), 1841–1853. Cited by: 12

Shahzad, K., Hasan, A., Naqvi, S. K. H., Parveen, S., Hussain, A., Ko, K. C., & Park, S. H. (2025). Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. Chemosphere, 370, 143936. Cited by: 11

Hussain, A., Raza, M. A., Shahzad, K., Ko, K. C., Han, S. S., & Park, S. H. (2024). Integration of molybdenum disulfide and phosphorene into polymeric-based nanocomposite hydrogels for various biomedical applications: Recent advances and future prospects. European Polymer Journal, 218, 113347. Cited by: 8

Saleem, M., Hussain, A., Hanif, M., Ahmad, H., Khan, S. U., Haider, S., Rafiq, M., et al. (2025). Synthesis, in vitro cytotoxic activity and optical analysis of substituted Schiff base derivatives. Journal of Fluorescence, 35(6), 3981–3989. Cited by: 6

Saleem, M., Hussain, A., Khan, S. U., Haider, S., Lee, K. H., & Park, S. H. (2025). Symmetrical ligand’s fabricated porous silicon surface based photoluminescence sensor for metal detection and entrapment. Journal of Fluorescence, 35(5), 2749–2762. Cited by: 5