Vipin Kumar Sharma | Advanced Separation | Best Researcher Award

Dr. Vipin Kumar Sharma | Advanced Separation | Best Researcher Award

Research Scholar at Indian Institute Of Technology (IIT) Tirupati | India

Dr. Vipin Kumar Sharma is a dedicated and accomplished chemical engineer with a strong academic and professional background. He earned his B.Tech. and M.Tech. in Chemical Engineering with First Class Distinction from SRM University, where he was awarded a Gold Medal and an SRM University Scholarship for academic excellence. He also holds postgraduate diplomas in Health, Safety & Environment and Business Administration from Annamalai University, both with First Class Distinction. Dr. Sharma completed his Ph.D. in Chemical Engineering at the Indian Institute of Technology, Tirupati. With over 15 years of professional experience, he has made significant contributions in the fields of heavy vessel design, fertilizer, cement, and uranium processing industries. Currently, he serves as Additional Superintendent (Mill & Safety) at Uranium Corporation of India Limited under the Department of Atomic Energy, where he oversees operations, safety, and regulatory compliance with agencies such as AERB, CPCB, and BARC. His research has been published in several SCI and Scopus-indexed journals, earning accolades such as the Best Paper Award during the Platinum Jubilee Celebration of IIChE (2022), and multiple technical paper awards. He has 4 publications with 5 citations and an h-index of 2, according to his Scopus profile. Dr. Sharma is affiliated with numerous professional bodies including ASME, IEI, IAENG, IFERP, and ISHMT, and serves as an Executive Alumni Member and Board of Studies Member at SRM University and KPR Institute of Engineering and Technology.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Sharma, V. K., Namboori, V. R., Tunga, C. R., & Lankalapalli, K. (2023). Technical modification of alkali leaching circuit to improve slurry throughput into the autoclave. Chandrasekhar, L., Lankalapalli, K., & Sarkar, S. (8).

Sharma, V. K., Thamida, S. K., & Reddy, B. N. K. (2023). Carbonation and modeling study for process liquor in batch mode using flue gas in the mining and mineral processing industry. Chemical Papers, 11(4), 1–17.

Sharma, L. R. V. K. (2019). Case study of air quality at Tummalapalle Mill and effective actions for improvement. In 36th DAE Safety & Occupational Health Professional Meet organised by Nuclear… (7*).

Sharma, V. K., Thamida, S. K., & Reddy, B. N. K. (2023). Engineering study of water jacket system in place of a spiral heat exchanger at mining and mineral ore processing industry. European Chemical Bulletin, 12(7), 1507–1512.

Sharma, V. K. (2020). Effective use of LDO fired boiler flue gas in carbonation of process liquor at alkali leaching based Tummalapalle Mill. Singhania University, District Jhunjhunu, Rajasthan, India. (5).

Zewen Li | Nickel Slag | Best Researcher Award

Mr. Zewen Li | Nickel Slag | Best Researcher Award

Xi’an University of Architecture and Technology | China

Mr. Zewen Li is a dedicated researcher at Xi’an University of Architecture and Technology, specializing in sustainable metallurgical processes. His work focuses on the resource utilization of metallurgical solid waste, particularly in the reductive recovery and diversified application of nickel slag. With a strong passion for green metallurgy, Zewen has contributed to advancing environmentally friendly approaches to metal recovery while exploring new uses for industrial by-products. His academic endeavors include authoring impactful publications, such as a review in Minerals Engineering that highlights the extraction of valuable metals and the potential of nickel slag in various material applications. Zewen is committed to integrating scientific research with industrial practice to promote circular economy principles and reduce environmental impact. As a young professional, he strives to advance metallurgical innovation, aiming to develop cleaner, safer, and more efficient technologies for the sustainable management of critical resources.

Professional Profile

Scopus

Education

Mr. Zewen Li pursued his higher education at Xi’an University of Architecture and Technology, where he developed a strong foundation in metallurgical engineering. His academic training emphasized the theoretical and applied aspects of metallurgy, with particular attention to solid waste resource recovery and sustainable metal extraction. During his studies, he actively engaged in research projects centered on the utilization of nickel slag, gaining expertise in analyzing its physical and chemical properties, as well as its potential for industrial reuse. His education provided him with a deep understanding of chemical thermodynamics, extractive metallurgy, and material characterization techniques. Through rigorous coursework, laboratory work, and collaborative projects, Zewen honed his ability to integrate scientific knowledge with practical industrial applications. This educational background not only equipped him with specialized knowledge in non-ferrous metallurgy but also cultivated his research-oriented mindset, enabling him to contribute meaningfully to the growing field of sustainable metallurgical processes.

Experience

Mr. Zewen Li’s professional and research experience has centered on the efficient recovery and sustainable utilization of metallurgical solid waste, with a strong focus on nickel slag. At Xi’an University of Architecture and Technology, he has undertaken significant research projects, including his notable publication “Diversified Utilization of Nickel Slag: A Review” in Minerals Engineering. His work systematically analyzed methods of extracting valuable metals such as iron, nickel, cobalt, and copper from nickel slag and investigated applications in gelling materials, glass ceramics, and material-related industries. Beyond laboratory research, Zewen has contributed to understanding the broader implications of waste valorization in metallurgical industries by reviewing and proposing strategies for combining nickel slag recovery with battery recycling and secondary waste management. His experience reflects both technical expertise and innovative thinking in sustainable metallurgy. This professional trajectory highlights his commitment to addressing environmental challenges and developing efficient, eco-friendly solutions for industrial waste management.

Research Focus

Mr. Zewen Li’s research is primarily focused on the sustainable utilization of metallurgical solid waste, with particular emphasis on nickel slag. His work aims to explore the dual goals of resource recovery and environmental protection by investigating eco-friendly processes for extracting valuable metals such as Fe, Ni, Co, and Cu. He is also deeply interested in the potential applications of nickel slag in materials science, including its use in gelling agents, glass ceramics, and construction materials. His studies address both the theoretical mechanisms, including leaching, weathering process strengthening, and solvent extraction, and the practical industrial feasibility of these methods. Additionally, he considers the integration of nickel slag recycling with other waste management systems, such as battery recycling and secondary waste utilization, thereby contributing to broader strategies of sustainable resource management. His research reflects a holistic view of metallurgy, balancing technological innovation with environmental responsibility to promote circular economy practices.

Publication top Notes

Title: Diversified Utilization of Nickel Slag: A Review

Year: 2025

Conclusion

Mr. Zewen Li’s research demonstrates a commendable commitment to addressing pressing environmental and industrial challenges through sustainable metallurgical practices. His focused work on the comprehensive utilization of nickel slag reflects both academic insight and awareness of real-world applications. While his current achievements illustrate strong potential and emerging expertise, the scope and maturity of his portfolio are still developing. For the Best Researcher Award, which typically honors individuals with a sustained record of impactful innovations and broader academic leadership, further scholarly contributions and practical implementations would enhance his competitiveness. Nonetheless, his trajectory indicates significant promise, and he stands out as a valuable contributor to the next generation of metallurgical researchers, well-suited for early-career recognition and future leadership in the field.

Huajie Luo | Thermal Crystal | Best Researcher Award

Assoc. Prof. Dr. Huajie Luo | Thermal Crystal | Best Researcher Award

Associate Professor at University of Science and Technology Beijing | China

Assoc. Prof. Dr. Huajie Luo is an accomplished researcher and associate professor at the University of Science and Technology Beijing, specializing in the design, structure, and performance regulation of ferroelectric ceramics and thin films. With over 60 published papers in high-impact journals, including Nature Communications, Science Advances, JACS, and Angewandte Chemie, he has made significant contributions to energy storage materials and piezoelectric technologies. His expertise spans from macroscopic electrostrain and energy density to atomic-level structural evolution using advanced synchrotron XRD, neutron diffraction, and total scattering techniques. Over the years, Dr. Luo has developed a strong profile in multi-scale crystal structure analysis and has been instrumental in unveiling mechanisms that enhance piezoelectric and energy storage performance in lead-free ceramics. With multiple national invention patents and recognition for his innovative contributions, Dr. Luo stands at the forefront of advancing sustainable and high-performance functional materials for energy applications.

Professional Profile

ORCID | Scopus

Education

Assoc. Prof. Dr. Huajie Luo pursued his higher education at the University of Science and Technology Beijing (USTB), where he embarked on a rigorous academic journey in materials science. He earned both his master’s and doctoral degrees in Physical Chemistry, with research focusing on the fundamental mechanisms and performance optimization of ferroelectric ceramics. His doctoral training emphasized advanced characterization techniques, including synchrotron XRD, neutron diffraction, and inverse Monte Carlo analysis, which allowed him to link structural evolution with macroscopic material properties. Following this, he undertook a prestigious postdoctoral fellowship at USTB’s Department of Physical Chemistry  where he deepened his research on high-performance electroceramics and functional thin films. His strong educational background not only provided him with profound theoretical knowledge but also with highly practical experimental skills, positioning him as a promising scholar and innovator in crystallography, energy storage materials, and piezoelectric systems.

Experience

Assoc. Prof. Dr. Huajie Luo’s professional career reflects a steady progression through advanced academic and research roles at the University of Science and Technology Beijing (USTB). After completing his doctoral studies, he became a postdoctoral researcher at USTB’s Department of Physical Chemistry, where he contributed to national-level projects focused on ferroelectric ceramics, synchrotron radiation analysis, and electrochemical energy storage. He was appointed associate professor at the School of Materials Science and Engineering, USTB. His role includes leading independent research projects, mentoring graduate students, and collaborating internationally on energy storage and structural design studies. Dr. Luo has also participated in major research programs such as China’s Key Research and Development initiatives, serving as both project leader and key contributor. His broad professional experience integrates materials chemistry, structural crystallography, and electroceramic design, providing both academic and industrial sectors with impactful solutions for energy storage, environmental sustainability, and next-generation materials innovation.

Awards and Honors

Throughout his career, Assoc. Prof. Dr. Huajie Luo has received multiple recognitions for his outstanding contributions to materials science and engineering. He was selected for China’s prestigious 7th Postdoctoral Innovative Talent Program, an initiative by the Ministry of Human Resources and Social Security to support promising young scientists. He was named Outstanding Postdoctoral Researcher at the University of Science and Technology Beijing, reflecting his exceptional contributions during his fellowship. He also earned the Wiley China High Contribution Author Award acknowledging the global impact of his research publications. Additionally, Dr. Luo was invited to join the Youth Editorial Board of Microstructures, highlighting his reputation as a rising leader in crystallography and electroceramics. His academic achievements are complemented by recognition in international conferences, where his oral and poster presentations have received attention in Japan, China, and global forums, solidifying his status as an innovative and influential researcher.

Research Focus

Assoc. Prof. Dr. Huajie Luo’s research centers on the design, structural analysis, and performance optimization of ferroelectric ceramics and thin films. His work emphasizes regulating macroscopic properties such as electrostrain and energy storage by tailoring multi-scale crystal structures. Using advanced techniques like synchrotron X-ray diffraction, neutron scattering, and total scattering analysis, he investigates the evolution of both short- and long-range structures to reveal the mechanisms behind high piezoelectricity and capacitive energy storage. Dr. Luo has made significant breakthroughs in achieving giant electrostrain in lead-free piezoelectrics and developing high-efficiency energy storage ceramics, with results published in top-tier journals including Science Advances, JACS, and Angewandte Chemie. His research not only provides new scientific insights but also proposes practical solutions for sustainable energy storage materials. By bridging fundamental crystallography with applied materials design, Dr. Luo aims to contribute to cleaner, greener energy systems while pushing the boundaries of functional materials innovation.

Publication top Notes

Conclusion

Assoc. Prof. Dr. Huajie Luo is highly suitable for the Best Researcher Award, given his impressive publication record, patents, and contributions to the understanding and development of lead-free ferroelectric ceramics with high electrostrain and energy storage properties. His research shows both academic depth and industrial applicability, making him a strong candidate. With expanded international collaborations and broader societal engagement, his impact could become even more profound.