Helmi Nasraoui | Energy Consumption | Research Excellence Award

Mr. Helmi Nasraoui | Energy Consumption | Research Excellence Award

Doctoral Researcher at The National Higher Engineering School of Tunis (ENSIT) | Tunisia

Mr. Helmi Nasraoui’s research reflects a strong commitment to advancing intelligent manufacturing through the integration of artificial intelligence, additive manufacturing, and robust design methodologies. His Scopus-indexed journal publication demonstrates effective use of Artificial Neural Networks and Gaussian Process Regression to predict energy consumption in AM-FDM processes, addressing sustainability and process optimization challenges. Complementary conference publications expand this work to rheology variation analysis and HVAC energy modeling, reinforcing the practical relevance of his research. Collectively, these contributions highlight methodological rigor, innovation, and industrial applicability. His Scopus profile records 1 indexed journal publication, multiple conference papers, an emerging citation record, supporting his suitability for the Research Excellence Award.

Professional Profiles

Featured Publications


Use of the RDPP-SF Method to Analyze Rheology Variation in an AM-Cement-Based
M. Amdouni, H. Nasraoui, M. A. Rezgui, A. Trabelsi –
Advances in Additive Manufacturing: Materials, Processes, and Applications, 2025


Applying the ANN and the GPR Models to Predict Energy Consumption for AM-FDM of Isovolumetric Mechanical Components
H. Nasraoui, A. Trabelsi, M. A. Rezgui –
Concurrent Engineering, Article ID: 1063293X251371108, 2025

Humaira Rashid Khan | Renewable Energy | Best Researcher Award

Dr. Humaira Rashid Khan | Renewable Energy | Best Researcher Award

Researcher at Universiti Sains Malaysia | Pakistan

Dr. Humaira Rashid Khan is a highly accomplished materials scientist whose research excellence in energy storage, nanomaterials, and photoelectrochemical systems strongly aligns with the expectations of the Best Researcher Award. Her work spans advanced polymer electrolyte membranes, Li–air battery challenges, supercapacitor development, nanocomposite engineering, and ZnO-based photoanodes for solar-driven water splitting, demonstrating both depth and multidisciplinary impact. She has produced significant contributions as evidenced by her 118 Scopus citations, 4 Scopus-indexed documents, and an h-index of 3, while her broader scholarly footprint includes more than 25 peer-reviewed publications in high-impact Q1 and Q2 journals, book chapters with Springer and Elsevier, and major review articles framing the future of next-generation electrochemical devices. Her publications address critical bottlenecks in battery chemistries, propose innovative membrane-fabrication strategies, and report enhanced photocurrent densities through rational nanostructure engineering, reflecting both originality and practical relevance. Dr. Khan has consistently advanced the scientific understanding of charge-transfer mechanisms, thin-film fabrication, dopant-driven band-gap tuning, and nanostructured electrode performance, supporting the global transition toward clean and sustainable energy technologies. Her international postdoctoral research experience, collaborative projects, and contributions to device-level prototypes highlight her ability to translate complex materials science concepts into scalable solutions. Through her rigorous experimentation, mastery of electrochemical and spectroscopic techniques, and sustained high-quality publication record, Dr. Khan demonstrates the research leadership, innovation, and scholarly influence that make her highly suitable for recognition under the Best Researcher Award category.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Khan, H. R., & Ahmad, A. L. (2025). Supercapacitors: Overcoming current limitations and charting the course for next-generation energy storage. Journal of Industrial and Engineering Chemistry, 141, 46–66. Cited by 149

Khan, H. R., & Ahmad, A. L. (2025). Vapor induced phase separation approach for fabricating high-performance PVDF-HFP/PEO polymer electrolyte membranes with improved electrochemical properties. Materials Today Communications, 42, 111330. Cited by 6

Shuja, F. S. A., Khan, H. R., Murtaza, I., Ashraf, S., & Yousra, … (2024). Supercapacitors for energy storage applications: Materials, devices and future directions: A comprehensive review. Journal of Alloys and Compounds. Cited by 89

Khan, M. S., Murtaza, I., Shuja, A., Fahad, S., Khan, M. W., Ahmmad, J., … Khan, H. R. (2024). Energy on-the-go: V2O5-pBOA-Graphene nanocomposite for wearable supercapacitor applications. Electrochimica Acta, 486, 144119. Cited by 14

Muhammad Shahid Khan, A. N., Murtaza, I., Shuja, A., & Khan, H. R. (2024). Tailored NiO-pBOA-GNP ternary nanocomposite: Advances in flexible supercapacitors and practical applications for wearable technology and environmental monitoring. Journal of Energy Storage, 86, 111128. Cited by 17

 

Pitchaiah S | Renewable Energy | Best Researcher Award

Dr. Pitchaiah S | Renewable Energy | Best Researcher Award

Assistant Professor at SRM TRP Engineering College | India

Dr. Pitchaiah Sudalaimuthu is a dynamic Research Assistant Professor at the Center for Advanced Energy Materials, SRM TRP Engineering College, Tamil Nadu, India. With deep expertise in renewable energy systems, solar desalination, and waste-to-energy technologies, his academic journey spans from a diploma in mechanical engineering to a Ph.D. from Anna University. His work focuses on sustainable water production, solar dryers, and advanced nanomaterials from waste. Dr. Sudalaimuthu has authored multiple high-impact publications, contributed to international conferences, and supervised experimental projects involving hydrogen production, thermal systems, and catalytic pyrolysis. His commitment to sustainable development and circular economy applications is evident in both his teaching and research contributions. With strong interdisciplinary skills and a passion for engineering innovation, Dr. Pitchaiah continues to drive forward impactful solutions in clean energy, water purification, and bioresource valorization.

Professional Profiles

Scopus

Google Scholar

Education

Dr. Sudalaimuthu earned his Ph.D. in Mechanical Engineering (Solar Desalination) from Anna University (2021–2025), where he specialized in experimental solar still enhancements using nanomaterials. He completed his M.E. in Thermal Engineering from Government College of Technology, Coimbatore (2016–2018), funded by a TEQIP Phase-2 scholarship. His undergraduate degree, B.E. in Mechanical Engineering (2013–2016), was from the National Engineering College, Tamil Nadu. Prior to that, he received a Diploma in Mechanical Engineering (2010–2013) from Sankar Polytechnic College. His academic foundation is rooted in strong theoretical and practical knowledge of thermodynamics, heat transfer, renewable energy, and sustainable engineering systems. Each stage of his education has contributed to his focus on waste-to-energy conversion, solar thermal systems, and nanomaterials for clean water production. His early interest in solar technology and circular economy applications was reinforced through hands-on research and guided thesis work under esteemed professors.

Professional Experience

Dr. Sudalaimuthu’s professional experience integrates research, teaching, and industry practice. From June 2021 to June 2025, he served as a Research Fellow at KPR Institute of Engineering and Technology, focusing on solar desalination and nanomaterials, supported by an institutional research fellowship. He previously worked in HVAC maintenance at ETA Engineering Pvt. Ltd. (2020–2021) and served as a Teaching Associate at KPR Institute and part-time lecturer at Government College of Technology. He taught renewable energy systems, HVAC, power plant engineering, and thermal sciences, and managed labs including IC engines and thermal systems. His Ph.D. research contributed new knowledge in solar still design, especially involving bio-wick and MXene-coated surfaces. With practical exposure to biodiesel production, lab-scale pyrolysis, and thermochemical reactors, he combines deep experimental insights with strong pedagogical skills, preparing him to lead advanced interdisciplinary research in green energy and sustainable engineering.

Research Focus 

Dr. Sudalaimuthu’s research is centered on sustainable water production and renewable energy integration. His Ph.D. focuses on passive inclined solar stills enhanced with localized interfacial evaporation techniques and MXene-based nanocoatings under varying flow conditions. He has developed novel approaches for improving freshwater yield from solar desalination systems using nanostructured bio-wick materials. His work also extends to green hydrogen generation via agro-waste valorization, catalytic pyrolysis of plastic waste, and sustainable fuel production. He has investigated emission-reduction strategies for CI engines using alternative fuels like Bael biodiesel and plastic-derived oils. His studies employ experimental, numerical (RSM, ANN), and optimization tools to understand energy and exergy dynamics in renewable systems. In the broader scope, he aims to create scalable, low-cost technologies for food preservation, water purification, and waste-to-energy conversion, aligning with the goals of a circular economy and net-zero carbon emissions. His work bridges thermal science, material science, and environmental engineering.

Publications to Notes

Enhancement and prediction of a stepped solar still productivity integrated with paraffin wax enriched with nano-additives 
Citations: 57
Year: 2023

Prediction and performance optimisation of a DI CI engine fuelled diesel–Bael biodiesel blends with DMC additive using RSM and ANN: Energy and exergy analysis 
Citations: 45
Year: 2023

Performance analysis on single slope solar still with absorber coated using iron oxide nanoparticles at different water thickness
Citations: 15
Year: 2023

The clean energy aspect of plastic waste — hydrogen gas production, CO₂ reforming, and plastic waste management coincide with catalytic pyrolysis 
Citations: 14
Year: 2023

Experimental investigation of inclined solar still through localized interfacial evaporation using nano enhanced Bio wick under disparate flow rate Citations: 12
Year: 2024

Conclusion 

Dr. Pitchaiah Sudalaimuthu is highly suitable for the Best Researcher Award, particularly in categories related to sustainable energy systems, green technologies, or emerging environmental scientists. His portfolio showcases technical depth, research originality, and a commitment to impactful science, addressing pressing global challenges like water scarcity and plastic waste. With continued strategic development in global collaboration and translational output, he is poised to become a recognized leader in clean energy research. His profile aligns well with the award’s vision of innovation, sustainability, and societal benefit.