Vipin Kumar Sharma | Advanced Separation | Best Researcher Award

Dr. Vipin Kumar Sharma | Advanced Separation | Best Researcher Award

Research Scholar at Indian Institute Of Technology (IIT) Tirupati | India

Dr. Vipin Kumar Sharma is a dedicated and accomplished chemical engineer with a strong academic and professional background. He earned his B.Tech. and M.Tech. in Chemical Engineering with First Class Distinction from SRM University, where he was awarded a Gold Medal and an SRM University Scholarship for academic excellence. He also holds postgraduate diplomas in Health, Safety & Environment and Business Administration from Annamalai University, both with First Class Distinction. Dr. Sharma completed his Ph.D. in Chemical Engineering at the Indian Institute of Technology, Tirupati. With over 15 years of professional experience, he has made significant contributions in the fields of heavy vessel design, fertilizer, cement, and uranium processing industries. Currently, he serves as Additional Superintendent (Mill & Safety) at Uranium Corporation of India Limited under the Department of Atomic Energy, where he oversees operations, safety, and regulatory compliance with agencies such as AERB, CPCB, and BARC. His research has been published in several SCI and Scopus-indexed journals, earning accolades such as the Best Paper Award during the Platinum Jubilee Celebration of IIChE (2022), and multiple technical paper awards. He has 4 publications with 5 citations and an h-index of 2, according to his Scopus profile. Dr. Sharma is affiliated with numerous professional bodies including ASME, IEI, IAENG, IFERP, and ISHMT, and serves as an Executive Alumni Member and Board of Studies Member at SRM University and KPR Institute of Engineering and Technology.

Profile : Scopus | ORCID | Google Scholar

Featured Publications

Sharma, V. K., Namboori, V. R., Tunga, C. R., & Lankalapalli, K. (2023). Technical modification of alkali leaching circuit to improve slurry throughput into the autoclave. Chandrasekhar, L., Lankalapalli, K., & Sarkar, S. (8).

Sharma, V. K., Thamida, S. K., & Reddy, B. N. K. (2023). Carbonation and modeling study for process liquor in batch mode using flue gas in the mining and mineral processing industry. Chemical Papers, 11(4), 1–17.

Sharma, L. R. V. K. (2019). Case study of air quality at Tummalapalle Mill and effective actions for improvement. In 36th DAE Safety & Occupational Health Professional Meet organised by Nuclear… (7*).

Sharma, V. K., Thamida, S. K., & Reddy, B. N. K. (2023). Engineering study of water jacket system in place of a spiral heat exchanger at mining and mineral ore processing industry. European Chemical Bulletin, 12(7), 1507–1512.

Sharma, V. K. (2020). Effective use of LDO fired boiler flue gas in carbonation of process liquor at alkali leaching based Tummalapalle Mill. Singhania University, District Jhunjhunu, Rajasthan, India. (5).

Ling Ge | Energy and Fuels | Best Researcher Award

Ling Ge | Energy and Fuels | Best Researcher Award

Wuhan University of Science and Technology |  China

Dr. Ling Ge is a Ph.D. candidate at the School of Resources and Environmental Engineering, Wuhan University of Science and Technology, specializing in advanced energy materials and energy storage technologies. Her research centers on the development and performance optimization of vanadium redox flow batteries (VRFBs), with a particular emphasis on engineering high-performance and highly stable vanadium electrolytes. She has been actively engaged in projects funded by the National Natural Science Foundation of China and the Science and Technology Innovation Talent Program of Hubei Province. Her contributions address one of the critical limitations in VRFB technology by expanding the operational temperature range of vanadium electrolytes, while simultaneously improving concentration levels, thus enhancing both stability and energy density. Ling Ge has published in leading journals, including Frontiers of Chemical Science and Engineering and Chemical Engineering Journal, with 15 citations indexed in WOS. Her research has led to the development of new patents, such as electrolyte preparation methods based on composite acid media, and she has contributed to collaborative efforts in deploying a 10 kW vanadium redox flow battery–photovoltaic integrated system. Dedicated to innovation in sustainable energy storage, she has consistently demonstrated strong analytical and experimental skills in advancing electrolyte chemistry and system integration. With her proven record of impactful contributions, she positions herself as a promising young researcher and a strong candidate for recognition under the Best Researcher Award category.

Profile: ORCID

Featured Publication

Ge, L., Liu, T., Zhang, Y., & Liu, H. (2025). Research of high temperature performance of vanadium electrolytes with sulfate-phosphoric mixed acid system. Chemical Engineering Journal, 468, 168239.

Ge, L., Liu, T., Zhang, Y., & Liu, H. (2024). Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature. Frontiers of Chemical Science and Engineering, 18(2), 2377.

Ge, L., Liu, T., Zhang, Y., & Liu, H. (2023). Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow battery. Frontiers of Chemical Science and Engineering, 17(9), 1221–1230.

 

Cheng Qian | Friction and Sealing | Best Researcher Award

Prof. Dr. Cheng Qian | Friction and Sealing | Best Researcher Award

Research Associate at Ningbo Institute of Technology, China.

🎓 Qian Cheng is a dedicated Ph.D. candidate in Mechanical Engineering at Shenyang University of Technology, under the mentorship of Dr. Shijie Wang. He specializes in advanced material design, surface engineering, and tribology. His research integrates nanotechnology, molecular simulations, and experimental validation to enhance polymer composites’ mechanical and aging properties. Qian Cheng has a multidisciplinary approach, combining engineering principles with data-driven methodologies such as machine learning 🤖. With 9 SCI-indexed papers as a first/corresponding author and ongoing cutting-edge projects, he continues to make impactful contributions in the fields of polymer science and mechanical systems 🔬⚙️. Known for his rigorous analytical skills and international academic exposure, including time spent in Germany, Cheng aims to innovate smarter, more resilient materials for modern mechanical systems 🌍🧪.

Professional Profiles📖

Scopus

ORCID

Education📚

📚 Qian Cheng’s academic journey reflects a strong foundation in mechanical and materials engineering. He began his undergraduate studies in Mechanical Design, Manufacturing, and Automation at Shenyang University of Aeronautics and Astronautics (2011–2015) ✈️🔧. He then pursued a Master’s degree (2016–2019) and is now completing a Ph.D. in Mechanical Engineering (2019–2024) at Shenyang University of Technology 🏫⚙️. During his Master’s, he was selected for an international exchange program at the University of Ahlen, Germany (2018–2019) 🇩🇪, where he specialized in polymer science 🧫. His educational path combines theoretical knowledge and hands-on experimentation with simulation-based analysis. Cheng’s passion for learning and innovation is evident in his commitment to pushing boundaries in materials science and mechanical systems development. His global perspective and interdisciplinary training empower him to tackle complex engineering challenges using both traditional and advanced tools 🌐🛠️.

Professional Experience💼

Qian Cheng has built his research experience around a comprehensive integration of simulation and experimental mechanics. He has actively contributed to research projects focusing on improving tribological behavior and thermal-oxidative aging resistance in polymer nanocomposites. During his Ph.D., Cheng designed and conducted molecular dynamics simulations to analyze the influence of nanomaterial structures on rubber composites. He also participated in lab-based experiments for materials testing and validation, bridging theory with practice. His stint at the University of Ahlen gave him hands-on experience in international research and polymer analysis. In parallel with his research, he has collaborated with fellow researchers on developing machine learning models for material property prediction. His professional trajectory is marked by academic rigor, publication success, and technical fluency, preparing him to contribute significantly to the field of mechanical and materials engineering.

Research Focus 🔍

Qian Cheng’s research 🔍 revolves around mechanical engineering, polymer nanocomposites, and material simulation. His work focuses on thermo-oxidative aging, mechanical durability, and tribological properties of rubber-based nanomaterials 🧪🛞. Using molecular dynamics simulations, he evaluates how different nanofillers—like carbon nanotubes, graphene oxide, and molybdenum disulfide—impact the performance of nitrile butadiene rubber (NBR) composites 🔄🧬. In addition, Cheng incorporates machine learning to model material behavior, enabling predictive design for future applications 🤖📊. His studies aim to improve the reliability and efficiency of components used in high-friction, high-temperature environments—critical in aerospace, automotive, and machinery sectors ✈️🚗⚙️. He also explores surface engineering and multi-scale materials research, developing systems that integrate nano-level innovation with macro-level function. His ambition is to pioneer sustainable and smart materials for next-generation mechanical equipment 🌿🔧.

Awards and Honors🏆

While specific award names are not provided, Qian Cheng’s prolific publication record in JCR Q1 and Q2 journals like Journal of Materials Research and Technology (IF=6.4), Journal of Polymer Science, and Polymer Composites indicates scholarly excellence 📚🏅. His acceptance as a visiting scholar at the University of Ahlen, Germany , reflects international academic recognition. The consistent acceptance of his work in high-impact journals suggests his research is well-regarded in the scientific community. His research outputs contribute to major areas like nanomaterials, surface modification, and tribological enhancement—critical fields within mechanical and polymer engineering. Cheng’s work has been cited and used as reference for tribological material improvement and molecular simulation techniques, showcasing his growing influence 🌟📖. He is expected to be a strong contender for future research fellowships and innovation awards in engineering science and materials research 🏆🔬.

Conclusion ✅

Cheng Qian demonstrates outstanding potential and current achievements as a researcher in advanced polymer nanocomposites and material science. His deep understanding of simulation-driven material design, backed by strong experimental work and publication output, positions him as a highly deserving candidate for the Best Researcher Award 🏆. While areas like project leadership and industry engagement can be further developed, his profile is well-rounded, ambitious, and aligned with future-ready scientific innovation.

Publications to Noted📚

Synergistic Enhancement of Mechanical and Tribological Properties of Nitrile Butadiene Rubber With RD‐Modified GO and CNTs as Antioxidants: Experiments and Molecular Dynamics Simulations

Authors: Cheng Qian; Xiaochao Liu; Wenfu Zeng; Guofeng Zhang; Rui Nie

Year: 2025

Comparative Study of the Tribological Properties of Diamond-Like Carbon and Nitride Coatings Deposited on 40Cr Surfaces

Authors: Rui Nie; Zhuobiao Li; Wenfu Zeng; Cheng Qian; Yunlong Li

Year: 2025

Comparative study on thermal-oxygen aging and tribological properties of carbon nanotubes and graphene sheet reinforced hydrogenated nitrile rubber composite materials

Authors: Qian C.; Wang S.; Li Y.; Nie R.; Song S.

Year: 2024

Design and preparation of sulfur vulcanized polyamide 66 cross-linked nitrile butadiene rubber networked and its application in blending with graphene oxide

Authors: Li X.; Li Y.; Qian C.; Wang S.; Nie R.

Year: 2024

Molecular dynamics investigation on the thermal-oxidative aging and mechanical properties of nitrile butadiene rubber composites with molybdenum disulfide

Authors: Qian C.; Chen J.; Wang S.; Wang M.; Song S.

Year: 2024

Relationship between the aging thermal oxygen and mechanical properties of nitrile butadiene rubber reinforced by RD-loaded carboxylated carbon nanotubes

Authors: Wang M.; Li Y.; Qian C.; Wang S.; Liu D.

Year: 2024

Review on stator rubber of progressive cavity pump for oil extraction,采油螺杆泵定子橡胶研究综述

Authors: Wang S.; Chen Z.; Li Y.; Qian C.; Yang B.

Year: 2024

Molecular dynamics and experimental study of mechanical and tribological properties of graphene‐reinforced nitrile butadiene rubber–phenolic resin composites

Authors: Yunlong Li; Zhiju Chen; Cheng Qian; Shijie Wang; Rui Nie

Year: 2024

A fine-tuning deep residual convolutional neural network for emotion recognition based on frequency-channel matrices representation of one-dimensional electroencephalography

Authors: Chen J.; Cui Y.; Qian C.; He E.

Year: 2023

A Study on the Relationship between the Aging Thermal Oxygen and Mechanical Properties of Nitrile Rubber Reinforced by Rd Load Carboxylated Carbon Nanotubes

Authors: Wang M.; Li Y.; Qian C.; Wang S.; Liu D.

Year: 2023

Zongliang Zuo | Thermodynamic | Best Researcher Award

Mr. Zongliang Zuo | Thermodynamic | Best Researcher Award

Associate Professor at Qingdao University of Technology, Pakistan.

🌟 Zuo Zongliang is a passionate researcher in thermal engineering 🔬. He holds a Ph.D. in Thermal Engineering from Northeastern University 🎓 and currently serves as an Associate Professor at Qingdao University of Technology 🏫. His research focuses on waste heat recovery ♻️, clean energy conversion 💡, and sustainable engineering practices 🌱. Known for his innovative contributions and dedication to advancing thermal technologies, Dr. Zuo has published extensively in high-impact journals and is the recipient of numerous awards 🏆. Beyond academics, he enjoys basketball 🏀 and running 🏃‍♂️.

 

Professional Profiles📖

Scopus

ORCID

Education 🎓

📚 Bachelor’s Degree in Thermal Energy and Power Engineering (2009–2013)
Northeastern University 🌟

📘 Master’s Degree in Thermal Engineering (2013–2015)
Northeastern University 🌠

🎓 Ph.D. in Thermal Engineering (2015–2019)
Northeastern University 🌏
🔬 Research on waste heat recovery and efficient energy utilization.

Professional Experience💼

👨‍🏫 Associate Professor (2019–Present)
Qingdao University of Technology

  • Leading research in clean energy and waste heat recovery.

  • Mentoring students and contributing to national projects.

📢 Student Leadership Roles (2010–2019)

  • Journalist, Editorial Department of School Papers 🖋️.

  • Minister, Organization Department ⚖️.

  • Monitor, School of Metallurgy 🔧.

 

Research Focus 🔍

♻️ Waste Heat Recovery
Transforming waste heat into usable energy.

Energy Conversion and Utilization
Innovating clean and efficient energy systems.

🧪 Sustainable Technologies
Developing eco-friendly processes in thermal engineering.

Awards and Honors

🏅 National Scholarship (2x)
🎖️ National Encouragement Scholarship (2x)
🥇 First-class Scholarship, Northeastern University (4x)
🏆 China College Students’ Entrepreneurship Competition: National Silver Medal
🥈 Innovation Competition of Metallurgical Youth: National Second Prize
🥉 National Energy Conservation Competition: National Third Prize
📐 National Mathematics Competition: Provincial First Prize

Skills

💻 Technical Proficiency

  • X-ray diffraction, FTIR, Thermogravimetric analysis
    🖥️ Software

  • OriginLab, Xpert Highscore
    🌍 Languages

  • English: CET-6 certified

Conclusion ✅

Dr. Zuo Zongliang is a strong candidate for the Best Researcher Award. His dedication, proven research excellence, and innovative contributions to thermal engineering make him highly deserving of this recognition. While some areas could be improved, his existing accomplishments already position him as a leader in his field. Granting this award to Dr. Zuo would validate his impactful work and inspire further advancements in sustainable energy solutions.

Publications to Noted📚

Application of Fe₂O₃ Catalytic Sludge Ceramics in the Control of Eutrophication in Water Bodies

Authors: Xiangyu Song, Gang Meng, Jiacheng Cui, Haoyan Yuan, Siyi Luo, Zongliang Zuo

Journal: Catalysts

Year: 2025

Research Progress on Energy-Saving Technologies and Methods for Steel Metallurgy Process Systems—A Review

Authors: Jiacheng Cui, Gang Meng, Kaiqiang Zhang, Zongliang Zuo, Xiangyu Song, Yuhan Zhao, Siyi Luo

Journal: Energies

Year: 2025

The Study of SCR Mechanism on LaMn₁₋ₓFeₓO₃ Catalyst Surface Based on DFT

Authors: Dongdong Ren, Kangshuai Lin, Taipeng Mao, Siyi Luo, Kaijie Liu, Zongliang Zuo, Keting Gui

Journal: Energies

Year: 2023

Citations: 25

Catalytic Pyrolysis of Waste Bicycle Tires and Engine Oil to Produce Limonene

Authors: Junzhi Wang, Xinjiang Dong, Zongliang Zuo, Siyi Luo

Journal: Energies

Year: 2023

Citations: 18

Waste Heat Recovery from Converter Gas by a Filled Bulb Regenerator: Heat Transfer Characteristics

Authors: Zongliang Zuo, Xinjiang Dong, Siyi Luo, Qingbo Yu

Journal: Processes

Year: 2023

Citations: 12

The Pyrolysis Behaviors of Blended Pellets of Pine Wood and Urea-Formaldehyde Resin

Authors: Xiaoteng Li, Siyi Luo, Zongliang Zuo, Weiwei Zhang, Dongdong Ren

Journal: Energies

Year: 2023

Citations: 9

Effects on Frequency Stability of Power System for Photovoltaic High-Penetration Ratio Grid-Connected Power Generation

Authors: Hui Guo, Shuai Zheng, Donghai Zhang, Pengfei Gao, Wenzhe Miao, Zongliang Zuo

Journal: Energies

Year: 2023

Citations: 20