Dr. Dechao Chen | Electrocatalysts | Best Researcher Award
Postdoctoral Researcher at Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences | China
Dr. Dechao Chen is a postdoctoral researcher at the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He has developed expertise in energy chemistry and environmental catalysis, with a strong focus on electrochemical devices and catalytic mechanisms. His academic journey has been marked by rigorous training and innovative contributions to advanced materials and sustainable catalytic systems. Dr. Chen has authored impactful publications in high-impact journals such as Advanced Materials, Nano Letters, Small, and Chemical Engineering Journal. His work explores critical areas including C–N coupling, ammonia synthesis, CO₂ reduction, and hydrogen production. He has also been awarded support from the China Postdoctoral Science Foundation to further develop single-atom catalyst research. Driven by curiosity and dedication, Dr. Chen aims to bridge fundamental science with practical applications to address pressing global energy and environmental challenges.
Professional Profile
Scopus | Google Scholar | ORCID
Education
Dr. Dechao Chen pursued his academic studies with a strong foundation in physics, materials science, and catalysis. He earned his Bachelor of Science degree in Physics and Information Engineering from Minnan Normal University, where he trained under the mentorship of Prof. Zhouan Zhou. His undergraduate work laid the groundwork for his interest in materials chemistry and catalysis. He then advanced his academic career at Hunan University, completing his Ph.D. in Materials Science and Engineering under the guidance of Prof. Yongwen Tan. During his doctoral studies, he focused on nanostructured metal compounds, electrocatalysis, and the development of novel energy conversion materials. His dissertation involved exploring nanoporous two-dimensional materials and electrocatalytic mechanisms for nitrogen reduction and hydrogen evolution. Dr. Chen’s educational journey provided him with extensive expertise in materials synthesis, advanced characterization techniques, and catalytic processes, shaping him into a skilled researcher capable of addressing challenges in sustainable energy.
Experience
Dr. Dechao Chen has gained valuable research experience through academic and institutional roles in materials science and electrochemistry. Currently, he serves as a postdoctoral researcher at the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, working under Prof. Lili Han. His postdoctoral research emphasizes surface stress regulation and electrocatalytic CO₂ reduction using single-atom catalysts, supported by funding from the China Postdoctoral Science Foundation. Prior to this, his doctoral research at Hunan University focused on nanoporous two-dimensional compounds with three-dimensional bicontinuous structures, as well as innovative strategies for scalable doping and alloying in transition metal dichalcogenides. He has also conducted collaborative work on gold- and ruthenium-based catalytic systems for nitrogen reduction and hydrogen production. With broad expertise in nanomaterials synthesis, structural analysis, and catalytic applications, Dr. Chen has established himself as a promising researcher in electrochemical energy conversion and environmental catalysis.
Awards and Honors
Dr. Dechao Chen has been recognized for his outstanding contributions to materials science and electrochemical catalysis through significant academic achievements. He received support from the prestigious China Postdoctoral Science Foundation to conduct research on surface stress regulation and CO₂ electroreduction using single-atom catalysts. His publications in highly ranked international journals, including Advanced Materials, Nano Letters, Small, and the Chemical Engineering Journal, serve as testament to his scholarly excellence and innovative contributions. His work has attracted recognition from the global scientific community, highlighting the relevance and originality of his research in energy chemistry and sustainable catalysis. While early in his career, his growing record of publications and funded research demonstrates his potential to achieve further honors and leadership roles in the future. Dr. Chen’s academic trajectory continues to establish him as an emerging figure in his field.
Research Focus
Dr. Dechao Chen’s research focuses on energy chemistry, environmental catalysis, and electrochemical devices. His work spans the development of advanced catalytic systems for C–N coupling, ammonia synthesis, water electrolysis, hydrogen evolution, and CO₂ reduction. He is particularly interested in the design and regulation of single-atom and dual-atom catalysts to optimize catalytic activity and selectivity. His doctoral and postdoctoral studies have also explored the synthesis of nanoporous two-dimensional metal compounds with bicontinuous three-dimensional structures, aiming to enhance surface area, electronic conductivity, and reaction kinetics. Additionally, he investigates the catalytic mechanisms underlying nitrogen reduction and hydrogen production, providing fundamental insights that guide material innovation. By combining advanced materials synthesis, state-of-the-art characterization techniques, and theoretical understanding, his research aims to address urgent global challenges in sustainable energy conversion and environmental remediation. Ultimately, Dr. Chen’s research contributes to advancing green chemistry solutions for next-generation energy technologies.
Publication top Notes
Rational strain engineering of single-atom ruthenium on nanoporous MoS₂ for highly efficient hydrogen evolution
Year: 2021
Citations: 344
Spontaneous Atomic Ruthenium Doping in Mo₂CTX MXene Defects Enhances Electrocatalytic Activity for the Nitrogen Reduction Reaction
Year: 2020
Citations: 320
Identifying Electrocatalytic Sites of the Nanoporous Copper–Ruthenium Alloy for Hydrogen Evolution Reaction in Alkaline Electrolyte
Year: 2020
Citations: 297*
Single-Atom Gold Isolated Onto Nanoporous MoSe₂ for Boosting Electrochemical Nitrogen Reduction
Year: 2022
Citations: 102
Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst
Year: 2023
Citations: 82
Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis
Year: 2020
Citations: 41
Conclusion
Dr. Dechao Chen is a highly suitable candidate for the Best Researcher Award. His strong record of publications in top-tier journals, independent research funding, and contributions to the fields of electrocatalysis and sustainable energy place him among the most promising young researchers in materials science. With continued emphasis on industrial translation, leadership development, and innovation beyond academia, he is well-positioned to become a leading figure in his discipline. His profile reflects both scientific excellence and future potential, making him a compelling choice for this recognition.