Qi Shi | Refractory Metals | Best Researcher Award

Qi Shi | Refractory metals | Best Researcher Award

Senior Engineer at Ningbo University of Technology | China

Assoc. Prof. Dr. Qi Shi is a distinguished researcher in materials science with a Ph.D. in Materials Science and Technology from Loughborough University, UK. Since returning to China, he has focused on the R&D of near-net-shape technologies, including advanced metal powders, powder metallurgy, and additive manufacturing. His pioneering work in radio-frequency (RF) plasma spheroidization of refractory metals has achieved breakthroughs in stable feeding technology for ultrafine powders, enabling consistent feeding and effective dispersion of low-density powders. He has also developed ultrasonic-fluidized bed wet classification methods for efficient micro-nano powder separation, leading to the production and commercialization of low-oxygen tantalum powder, ultrafine tungsten powder, and ultra-high hardness cast tungsten carbide powder. His research extends to metal additive manufacturing and post-processing, where he has advanced powder suitability evaluation and clarified the role of powder characteristics in selective laser melting (SLM). Through hot isostatic pressing and high-pressure heat treatment, he has enhanced strength–toughness synergy and significantly improved high-cycle fatigue performance in stainless steel, tantalum, and tungsten. Qi Shi has led five major government-funded projects, securing over RMB three million, and contributed to more than ten additional national and regional initiatives. He has published 35 academic papers in prestigious journals such as Additive Manufacturing, Materials Science and Engineering: A, and Journal of Materials Research and Technology, including 15 as first or corresponding author. According to his Scopus profile, he has more than 356 citations and an h-index of 13. He has also applied for 21 patents (15 granted), contributed to national standards, authored professional books, and received multiple awards, including the China Nonferrous Metals Industry Science and Technology Award (Second Prize) and the National Technical Standard Excellence Award (First Prize).

Profile: Scopus

Featured Publications

Shi, Q., Li, D., Du, W., Wu, A., & others. (2024). Improved mechanical properties and thermal conductivity of laser powder bed fused tungsten by using hot isostatic pressing. Cited by: 2

Pu, Y., Zhao, D., Liu, B., Shi, Q., & others. (2024). Microstructure evolution and mechanical properties of Ti-25Ta alloy fabricated by selective laser melting and hot isostatic pressing. Cited by: 1

Xu, J., Chen, H., Shi, Q., Liu, X., & others. (2024). Interdiffusion mechanism of hybrid interfacial layers for enhanced electrical resistivity and ultralow loss in Fe-based nanocrystalline soft magnetic composites. Cited by: 3

Qin, F., Shi, Q., Zhou, G., Wen, J., & others. (2024). Simultaneously enhanced strength and plasticity of laser powder bed fused tantalum by hot isostatic pressing. Cited by: 2

Qin, F., Shi, Q., Zhou, G., Yao, D., & others. (2023). Influence of powder particle size distribution on microstructure and mechanical properties of 17-4 PH stainless steel fabricated by selective laser melting. Cited by: 14

Guangsheng Song | Materials science | Best Researcher Award

Prof. Dr. Guangsheng Song | Materials science | Best Researcher Award

Academic leader at Anhui University of Technology, Australia.

Dr. Guangsheng Song, a renowned professor and science leader, specializes in materials science and engineering. Based at Anhui University of Technology, China, he has over two decades of expertise in developing advanced materials for sustainable applications. His research spans hydrogen separation membranes, light metal materials, and nanomaterials for energy storage. With a global academic footprint, Dr. Song has held significant roles across prestigious institutions in China, South Korea, New Zealand, Canada, and Australia. His innovative contributions have earned international recognition, driving breakthroughs in materials science.

Professional Profiles📖

Scopus

Education 🎓

Dr. Song’s academic journey reflects his commitment to advanced materials science. He completed his PhD in Materials Science and Engineering at Harbin Institute of Technology, China, in 1994, focusing on light metal materials and their applications. His postdoctoral studies at Canterbury University, New Zealand, from 2002 to 2004, allowed him to deepen his expertise in metallurgical and mechanical engineering. These academic pursuits laid the foundation for his subsequent pioneering research and professional achievements.

Professional Experience💼

Dr. Song’s career is marked by leadership roles across globally renowned institutions. Since 2017, he has served as a professor and science leader at Anhui University of Technology, advancing research in materials science. Previously, he was a senior scientist at CSIRO Manufacturing Flagship, Australia (2007–2016), contributing to innovative manufacturing technologies. His research experience includes roles as a research associate at McGill University, Canada (2004–2006), a postdoctoral fellow at Canterbury University, New Zealand (2002–2004), and a senior researcher at Yonsei University, South Korea (1999–2002). Earlier in his career, he was an associate professor at Northwestern Polytechnical University, China (1995–1999).

Research Focus 🔍

Dr. Song’s research addresses critical challenges in materials science. His work on hydrogen separation alloy membranes aims to develop efficient solutions for clean energy applications. He explores the design and application of light metal materials, focusing on their use in the aerospace and automotive industries. His studies on nanomaterials for energy storage and conversion devices seek to enhance renewable energy technologies. Additionally, he investigates the process-structure-property relationship and conducts engineering failure analysis to improve material performance and reliability.

Awards and Honors

Dr. Song’s contributions have been recognized with numerous accolades. He received the Outstanding Science Leader Award for his innovative research and the CSIRO Excellence in Manufacturing Research Award for his impact on advanced materials development. He has been acknowledged as a recognized reviewer for leading materials science journals and received the Excellence in International Collaboration Award for fostering global research partnerships. These honors underscore his influence in the field of materials science and engineering.

Conclusion ✅

Dr. Guangsheng Song is a compelling candidate for the Best Researcher Award. His expertise in hydrogen separation alloys and nanomaterials, combined with a remarkable international career and leadership role, positions him as a frontrunner in material science research. Addressing areas such as expanding publication reach and enhancing global collaborations could solidify his standing as a global leader in the field.

Publications to Noted📚

  1. First-principles study of hydrogen separation behavior in vanadium–aluminum alloys

  • Year: 2025

  1. Heterojunction design of ZnO/α-Fe2O3 with dual enhancement of ion/electron transport for energy storage

  • Citations: 1

  • Year: 2025

  1. Significant improvement of cold-rolling formability and hydrogen embrittlement resistance of Y-doped V alloy membranes for hydrogen separation

  • Year: 2025

  1. Research Progress in Alloying and Plastic Deformation of Ultralight Mg-Li Alloy

  • Year: 2025

  1. In-situ synthesis of Mn2SiO4 and MnxSi dual phases through solid-state reaction to improve the initial Coulombic efficiency of SiO anode for Lithium-Ion batteries

  • Year: 2025

  1. Effect of Asymmetric Rolling on the Microstructure, Texture, and Mechanical Properties of Mg–11Li–3Al–2Zn Alloy

  • Year: 2025

  1. Electrochemical exfoliated graphene-encapsulated SiO-TiO2 composites as anode materials for Li-ion batteries

  • Year: 2025

  1. Recent developments in coating investigation of LiNixMnyCo1-x-yO2 cathode material with promising (Li, Ni) rich layered for future generation lithium-ion batteries (Review)

  • Citations: 3

  • Year: 2025

  1. Preparation and electrochemical properties of Fe2O3 modified Si/SiO2 composites

  • Year: 2024

  1. Multi-Doping Exploration of (Sb, Bi and Ba) by First Principles on Ordered Zn-Si-P Compounds as High-Performance Anodes for Next-Generation Li-Ion Batteries (Open access)

  • Citations: 2

  • Year: 2024