Galina Kasperovich | Foundry Industry | Best Metallurgical Engineering Award

Dr. Galina Kasperovich | Foundry Industry | Best Metallurgical Engineering Award

Scientific Associate at German Aerospace Center | Germany

Dr. Galina Kasperovich is an internationally recognized expert in materials science and metallurgy with more than four decades of research and academic contributions. Currently serving as a senior researcher at the German Aerospace Center (DLR) in Cologne, she specializes in the study of directional solidification of metallic alloys under both terrestrial and microgravity conditions, additive manufacturing, and thermophysical modeling. She holds dual university degrees in heat physics and foundry engineering, along with a Doctor of Engineering (Dr.-Ing.), which together underpin her multidisciplinary expertise bridging theoretical, experimental, and applied research. Her pioneering work in laser powder bed fusion (LPBF) of titanium and nickel alloys has advanced aerospace applications, particularly in turbine blade design and high-performance materials. She has authored numerous peer-reviewed publications and presented widely at international conferences, contributing significantly to the development of modern alloy processing. With 22 Scopus-indexed documents, 1704 citations, and an h-index of 10, her research has been widely acknowledged by the scientific community. Beyond technical expertise, Dr. Kasperovich has been instrumental in strengthening global collaborations in materials science, integrating simulation and experimental approaches to address complex challenges in metallurgical engineering. Her career demonstrates not only scholarly depth but also practical innovation, making her a leading figure in additive manufacturing and space-related material research. Through her work, she has influenced both academic knowledge and industrial applications, solidifying her reputation as a key contributor to the advancement of high-performance materials in aerospace and beyond.

Profile: Scopus | ORCID

Feautured Publications

Haubrich, J., Kasperovich, G., Gussone, J., Petersen, A., Schöffler, R., Lakemann, M., Ebel, P.-B., & Winkelmann, P. (2025, June). Advancing high-pressure turbine vane cooling through additive manufacturing: Insights from the 3DCeraTURB project. Proceedings of the ASME Turbo Expo Conference. Deutsches Zentrum für Luft- und Raumfahrt (DLR).

Kasperovich, G., Gussone, J., Besel, Y., Bartsch, M., & Haubrich, J. (2025, June). Optimizing mechanical performance of LPBF Inconel 718 for turbo-engine applications through tailored heat treatment and process parameter strategies. Proceedings of the ASME Turbo Expo Conference. Deutsches Zentrum für Luft- und Raumfahrt (DLR).

Müller, B. R., Kupsch, A., Laquai, R., Nellesen, J., Tillmann, W., Kasperovich, G., & Bruno, G. (2018). Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques. Materials Science Forum, 941, 2401–2406. Cited: 9

Kasperovich, G., Gussone, J., Bartsch, M., Haubrich, J., & Ebel, P.-B. (2025). Fuel thermal management and injector part design for LPBF manufacturing. Journal of Engineering for Gas Turbines and Power. Deutsches Zentrum für Luft- und Raumfahrt (DLR).

Kasperovich, G., Gussone, J., Besel, Y., Haubrich, J., & Bartsch, M. (2025). Tailoring the strength of Inconel 718: Insights into LPBF parameters and heat treatment synergy. Materials & Design. Deutsches Zentrum für Luft- und Raumfahrt (DLR). Cited: 6

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Chen Xu | Martensitic Transformation | Best Materials Engineering Award

Doctor at China Jiliang University | China

Dr. Chen Xu is an Assistant Research Fellow at China Jiliang University specializing in the metallurgy and materials science of magnesium, aluminum, titanium, and copper alloys. He earned his Ph.D. in Materials Science and Engineering from Zhengzhou University, following an M.D. in Metallurgical Engineering from Lanzhou University of Technology and a B.A. in Metallurgical Engineering from Lanzhou College of Information Science and Technology. His research spans melting processes, microstructure, heat treatment, deformation treatment, corrosion resistance, coatings, martensitic transformations, and first-principles calculations. Dr. Xu has contributed to several national research projects, including those funded by the National Natural Science Foundation of China, and has authored multiple peer-reviewed publications in high-impact journals such as Materials & Design, Journal of Magnesium and Alloys, Materials Science & Engineering A, and Journal of Alloys and Compounds. His recent works cover topics like heat treatment effects on Mg-Sc alloys, martensitic transformation behavior, micro-galvanic corrosion, and advanced aluminum-titanium-carbon master alloys. He has also published research on the optimization of aluminum alloys and collaborated on interdisciplinary studies involving carbon quantum dots for cancer therapy. With a 7 Scopus-indexed publications citation count of 67 and an h-index of 4 on Scopus, his profile is at an early stage of international recognition, supported by active involvement in national projects, editorial board membership with Modern Chemical Research, and patent applications. Chen Xu’s contributions demonstrate a clear trajectory toward impactful innovations in advanced materials engineering, combining experimental studies with computational insights to advance alloy design and performance.

Profile: Scopus | ORCID

Featured Publicationns

Xu, C., Liu, S., Wang, J., & Li, H. (2023). Initial micro-galvanic corrosion behavior between Mg₂Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation. Journal of Magnesium and Alloys, 11(3), 958–965. Cited by: 21

Xu, C. (2023). Martensitic transformation behavior during tensile testing at room temperature in β-type Mg-35 wt%Sc alloy. Materials Science & Engineering A, 865, 144602. Cited by: 7

Xu, C. (2023). Effect of quenching temperature on microstructure and mechanical properties of Mg-35 wt%Sc alloy. Journal of Alloys and Compounds, 943, 169165. Cited by: 5

Xu, C. (2019). Preparation and synthesis thermokinetics of novel Al-Ti-C-La composite master alloys. Journal of Alloys and Compounds, 776, 904–911. Cited by: 43

Xu, C. (2017). Effect of Al-5Ti-0.62C-0.2Ce master alloy on the microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy. Metals, 7(6), 227. Cited by: 52