Xiaomi Zhou | Hydrogen Energy | Best Researcher Award

Dr. Xiaomi Zhou | Hydrogen Energy | Best Researcher Award

Doctor at Jining University | China

Dr. Xiaomi Zhou is a distinguished faculty member at the School of Mechanical and Electrical Engineering, Jining University, whose research centers on next-generation energy materials and solid oxide fuel cells (SOFCs). She has made notable contributions to the field through the development of molten hydroxide-based electrolytes that enable efficient operation at low temperatures, addressing one of the major limitations in traditional SOFC systems. Her innovative work on molten aluminum hydroxide (Al(OH)₃) as a high-performance electrolyte led to the creation of a bilayer structure (Al(OH)₃/SrTiO₃), facilitating superior proton conduction through a dynamic hydrogen-bonding network. Dr. Zhou’s research, supported by the Hundred Outstanding Talent Program of Jining University, has been published in leading international journals such as Ceramics International, where her paper “Molten Al(OH)₃ as an Innovative Electrolyte for SOFCs Below 500 °C” stands out as a significant scientific contribution. She has collaborated with prominent institutions including Hubei University, Shenzhen MSU-BIT University, and Kaili University, enhancing interdisciplinary research and innovation in energy systems. According to her Scopus profile, Dr. Zhou has authored 12 publications, received 148 citations, and holds an h-index of 7, reflecting her growing influence in the materials and energy research community. Her pioneering studies on proton transport mechanisms via the Grotthuss process have substantially advanced the understanding of low-temperature SOFCs, paving the way for sustainable, high-efficiency fuel cell technologies with potential industrial and environmental benefits.

Profile: Scopus | Research Gate

Feautured Publications

Zhou, X., Niu, S., Tian, Q., Ma, X., Jing, Y., Fu, M., & Wang, B. (2025). Molten Al(OH)₃ as an innovative electrolyte for SOFCs below 500 °C. Ceramics International.

Chen, H., Zhong, D., Xia, C., Zhou, X., & Wang, B. (2025). Cr poisoned the LiNi₀.₈Co₀.₁₅Al₀.₀₅O₂−δ cathode and the alkaline Li impregnation to recover the performance of Cr poisoned solid oxide fuel cell. Journal of Power Sources.

Zhou, X., Zheng, D., Wang, Q., Xiang, Y., & Wang, B. (2023). In situ formation of Ba₃CoNb₂O₉/Ba₅Nb₄O₁₅ heterostructure in electrolytes for enhancing proton conductivity and SOFC performance. Journal of Materials Chemistry A. Cited by 5

Xiang, Y., Jiang, C., Zheng, D., Zhou, X., & Wang, B. (2022). Interlayer conducting mechanism in α-LiAlO₂ enables fast proton transport with low activation energy for solid oxide fuel cells. Electrochimica Acta, 431, 141208. Cited by 13