Vladimir Atanasov | Fuel Cell | Excellence in Research Award

Dr. Vladimir Atanasov | Fuel Cell | Excellence in Research Award

Team Leader at University of Stuttgart | Germany

Dr. Vladimir Milanov Atanasov is a distinguished researcher in polymer and membrane technology with more than 25 years of international experience in the field of chemical and polymer engineering. He currently serves as Team Leader for Polymer and Membrane Technology at the Institute of Chemical Process Engineering, University of Stuttgart. Born and educated in Bulgaria, he earned his M.Sc. in Organic and Analytical Chemistry from Sofia State University, followed by a Ph.D. under the supervision of Prof. Müllen at the Max Planck Institute for Polymer Research, Mainz. Dr. Atanasov has held several prestigious postdoctoral appointments, including at the MPI for Polymer Research, MPI for Solid State Research, and the University of Stuttgart, where his work focused on fuel cell and biomembrane applications. His expertise spans polymer electrolyte membrane (PEM) preparation, advanced polymerization techniques, post-modification methods, and organic synthesis, particularly in phosphonated and sulfonated fluoro-arylenes and functionalized lipids. He is skilled in a wide range of characterization techniques, including EIS, DMA, NMR, MALDI-ToF, GPC, DSC, and FTIR. Dr. Atanasov has authored 33 scientific documents, including 35 peer-reviewed papers, and holds three patents. His contributions have been cited over 1,181 times, and his current Scopus profile reflects an h-index of 16. His ongoing research focuses on the development and characterization of novel polymer electrolyte membranes for high-temperature proton exchange membrane fuel cells (HT-PEMFC), combining innovative materials and advanced film-forming techniques to enhance efficiency and durability in energy applications.

Profile: Scopus | ORCID | Google Scholar

Feautured Publications

Atanasov, V., Knorr, N., Duran, R. S., Ingebrandt, S., Offenhäusser, A., & Knoll, W. (2005). Membrane on a chip: A functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophysical Journal, 89(3), 1780–1788. Cited by: 250

Schuster, M., de Araujo, C. C., Atanasov, V., Andersen, H. T., Kreuer, K. D., & Maier, J. (2009). Highly sulfonated poly (phenylene sulfone): Preparation and stability issues. Macromolecules, 42(8), 3129–3137. Cited by: 204

Atanasov, V., Lee, A. S., Park, E. J., Maurya, S., Baca, E. D., Fujimoto, C., Hibbs, M., & others. (2021). Synergistically integrated phosphonated poly (pentafluorostyrene) for fuel cells. Nature Materials, 20(3), 370–377. Cited by: 198

Lim, K. H., Lee, A. S., Atanasov, V., Kerres, J., Park, E. J., Adhikari, S., Maurya, S., & others. (2022). Protonated phosphonic acid electrodes for high power heavy-duty vehicle fuel cells. Nature Energy, 7(3), 248–259. Cited by: 162

Atanasov, V., Atanasova, P. P., Vockenroth, I. K., Knorr, N., & Köper, I. (2006). A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjugate Chemistry, 17(3), 631–637. Cited by: 94

Atanasov, V., & Kerres, J. (2011). Highly phosphonated polypentafluorostyrene. Macromolecules, 44(16), 6416–6423. Cited by: 93

Ling Ge | Energy and Fuels | Best Researcher Award

Ling Ge | Energy and Fuels | Best Researcher Award

Wuhan University of Science and Technology |  China

Dr. Ling Ge is a Ph.D. candidate at the School of Resources and Environmental Engineering, Wuhan University of Science and Technology, specializing in advanced energy materials and energy storage technologies. Her research centers on the development and performance optimization of vanadium redox flow batteries (VRFBs), with a particular emphasis on engineering high-performance and highly stable vanadium electrolytes. She has been actively engaged in projects funded by the National Natural Science Foundation of China and the Science and Technology Innovation Talent Program of Hubei Province. Her contributions address one of the critical limitations in VRFB technology by expanding the operational temperature range of vanadium electrolytes, while simultaneously improving concentration levels, thus enhancing both stability and energy density. Ling Ge has published in leading journals, including Frontiers of Chemical Science and Engineering and Chemical Engineering Journal, with 15 citations indexed in WOS. Her research has led to the development of new patents, such as electrolyte preparation methods based on composite acid media, and she has contributed to collaborative efforts in deploying a 10 kW vanadium redox flow battery–photovoltaic integrated system. Dedicated to innovation in sustainable energy storage, she has consistently demonstrated strong analytical and experimental skills in advancing electrolyte chemistry and system integration. With her proven record of impactful contributions, she positions herself as a promising young researcher and a strong candidate for recognition under the Best Researcher Award category.

Profile: ORCID

Featured Publication

Ge, L., Liu, T., Zhang, Y., & Liu, H. (2025). Research of high temperature performance of vanadium electrolytes with sulfate-phosphoric mixed acid system. Chemical Engineering Journal, 468, 168239.

Ge, L., Liu, T., Zhang, Y., & Liu, H. (2024). Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature. Frontiers of Chemical Science and Engineering, 18(2), 2377.

Ge, L., Liu, T., Zhang, Y., & Liu, H. (2023). Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow battery. Frontiers of Chemical Science and Engineering, 17(9), 1221–1230.