Bel Abbes Bachir Bouiadjra | Adhesive Joining | Best Researcher Award
Head of Research Lab at Djillali Liabes University | Algeria
Prof. Dr. Bel Abbes Bachir Bouaiadjra is a Professor in the Department of Mechanical Engineering at Djillali Liabes University of Sidi Bel Abbes, Algeria, with extensive expertise in materials science, fracture mechanics, and composite structures. He has also served as a visiting professor at King Saud University in Riyadh. A distinguished scholar, he won the prestigious Scopus Award in Materials Science for his outstanding research contributions. His scientific work focuses on nanomaterials, biopolymers, biocomposites, polymer testing, and the fatigue and fracture of aircraft structures, composites, biomaterials, and bimaterials such as ceramic–metal assemblies. Over his career, he has directed significant projects, including the study of residual stresses in ceramic-metal assemblies and the influence of micro-defects in cement mantles on hip prostheses. His international collaborations include research with King Abdulaziz City for Science and Technology (Saudi Arabia), the University of Tours (France), and the University of La Rochelle (France). Professor Bouaiadjra has authored numerous publications in ISI-indexed journals, addressing advanced topics such as bonded composite patch repair of aircraft structures, optimization of polymer composites, fatigue crack growth, and finite element analyses of biomedical implants. According to his Scopus profile, he has produced more than 166 publications, with over 2,946 citations and an h-index of 32, reflecting the global impact of his research in mechanical and materials engineering. His academic excellence, international visibility, and leadership in collaborative projects underscore his role as a leading figure in fracture mechanics and advanced composite materials.
Profile: Scopus | ORCID | Google Scholar
Feautured Publications
Bouchkara, N. H. M., Albedah, A., Benyahia, F., Mohammed, S. M. A. K., & Bouiadjra, B. A. B. (2021). Experimental and numerical analyses of the effects of overload on the fatigue life of aluminum alloy panels repaired with bonded composite patch. International Journal of Aeronautical and Space Sciences, 22(4), 1012–1024. Cited by: 12
Kaddour, S., Bennouna, M. S., Aour, B., Bouiadjra, B. A. B., Benaissa, A., & Bouanani, M. F. (2019). Numerical investigation of the adhesive damage used for the repair of A5083 H11 aluminum structures by composites patches. International Journal of Engineering Research in Africa, 44, 22–33. Cited by: 4
Ali, B. M., Chikh, E. O., Meddah, H. M., & Bouiadjra, B. A. B. (2019). Plasticity effect on the mechanical behavior of an amorphous polymer. International Journal of Engineering Research in Africa, 43, 1–12. Cited by: 3
Khellafi, H., Bouziane, M. M., Djebli, A., Mankour, A., Bendouba, M., Bouiadjra, B. A. B., & Chikh, E. O. (2019). Investigation of mechanical behaviour of the bone cement (PMMA) under combined shear and compression loading. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 41, 37–45. Cited by: 5
Kaddour, S., Aour, B., Bouiadjra, B. A. B., Bouanani, M. F., & Khelil, F. (2018). Analysis of crack propagation by bonded composite for different patch shapes repairs in marine structures: A numerical analysis. International Journal of Engineering Research in Africa, 35, 175–185. Cited by: 7
Salah, H., Bouziane, M. M., Fekih, S. M., Bouiadjra, B. A. B., & Benbarek, S. (2018). Optimisation of a reinforced cement spacer in total hip arthroplasty. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 35, 35–42. Cited by: 6