83 / 100 SEO Score

Assoc. Prof. Dr. Rui Nie | Tribology | Best Researcher Award

Associate Researcher at Ningbo Institute of Technology, China.

Dr. Rui Nie is a distinguished researcher at the Ningbo Institute of Technology, Beihang University, specializing in mechanical tribology and surface engineering. His work addresses the pressing challenges in aerospace actuation systems and spacecraft interfaces. Through interdisciplinary approaches, Dr. Nie has significantly advanced understanding of friction, wear, and lubrication behaviors in high-performance environments. He has contributed to projects like the “973 Program” and the Chang’e lunar missions. With deep insight into ultrasonic motors, piston pumps, and tribological systems, Dr. Nie has developed dynamic models, predictive algorithms, and innovative surface treatments. His contributions extend from theory to real-world application, exemplified by his involvement in multiple prototype generations of aerospace electro-hydraulic actuation systems. His collaborative research has been published in high-impact journals and recognized through competitive funding from major national foundations. A dynamic contributor to China’s cutting-edge aerospace innovation, Dr. Nie remains committed to pushing boundaries in tribology and material performance.

Professional Profiles📖

Scopus

ORCID

Education📚

Dr. Rui Nie has a rich academic background grounded in mechanical engineering and tribology. He earned his undergraduate and master’s degrees from the School of Mechanical Engineering, Shenyang University of Technology (2005–2019). During this period, he served as an intern at the Huachen Group and in the State Key Lab for Tunnel Boring Machines. From 2013 to 2019, he pursued his Ph.D. at Shenyang University of Technology, supported by joint training under the prestigious 973 Program at Nanjing University of Aeronautics and Astronautics. He expanded his international experience as a special research student at the Muroran Institute of Technology in Japan (2017–2018). Following this, he undertook a postdoctoral fellowship at NUAA’s School of Aeronautics and Astronautics (2019–2021). This diverse and intensive academic journey equipped Dr. Nie with multidisciplinary skills in surface mechanics, aerospace tribology, and machine learning applications.

Professional Experience💼

Dr. Rui Nie currently serves at Ningbo Institute of Technology, Beihang University, where he leads advanced research in tribology and aerospace surface systems. He has played key roles in projects involving ultrasonic motors for spacecraft, aviation electric pumps, and EHA systems, contributing to the development of three generations of aerospace prototypes. His work has addressed real-world challenges in high-speed oil-lubricated interfaces, solid-liquid composite lubrication, and surface texturing. Dr. Nie employs high-precision simulation, mechanical characterization, and machine learning to study friction behavior, wear resistance, and lubrication mapping. His collaborative research has led to patented technologies and has been published in top Q1 journals. He has been a core team member on major national projects, including the 973 Program, and his ultrasonic motor technology has been applied in Chang’e-4, Chang’e-5, and Mozi missions. He is an emerging leader in tribo-mechanical design and aerospace system optimization.

Research Focus 🔍

🔧 Dr. Rui Nie’s research centers on mechanical tribology, 🧪surface coating technologies, and 🚀aerospace actuation components. He explores three major areas:
1️⃣ Frictional behavior at interfaces — investigating the wear and lubrication mechanisms in high-speed, heavy-duty aerospace components such as aviation piston pumps.
2️⃣ Motion conversion mechanisms — modeling dynamic vibration and displacement behaviors in ultrasonic motor interfaces used in spacecraft.
3️⃣ Material-friction property mapping — using machine learning to correlate mechanical material properties with wear performance and friction coefficients.
His research also includes 🧴 coatings (DLC, nitrides), 🧬 nanolubricants (MXene, MoS₂, graphene), and 🖋️ texture design based on bio-mimetic and stress field analysis. These innovations are applied in low-wear friction pair systems, enhancing performance and durability. Dr. Nie’s goal is to deliver precision surface engineering solutions that improve reliability and energy efficiency in extreme environments.

Awards and Honors🏆

Dr. Rui Nie’s excellence in tribology and aerospace engineering has earned him multiple national and regional research grants, including two projects funded by the National Natural Science Foundation of China (52475048 & 52105062) and two from the Ningbo Natural Science Foundation (2024S001 & 2021J013). His contributions to the 973 Program, a landmark national scientific initiative, highlight his deep involvement in strategic technological advancements. Dr. Nie’s work on aerospace friction pairs and ultrasonic motors has directly supported Chang’e lunar missions and other high-profile projects in both aerospace and biomedical sectors. He has received institutional honors for innovation in mechanical design and contributions to tribology science, and he frequently serves as a reviewer for top-tier journals. His ability to translate theoretical research into applied technologies sets him apart in the Chinese engineering community. These achievements reflect his dedication to bridging the gap between academic rigor and engineering impact.

Conclusion ✅

Dr. Rui Nie undoubtedly qualifies as a top-tier candidate for the Best Researcher Award in Friction and Sealing. His multi-disciplinary research, experimental depth, and real-world contributions to aerospace systems make him a benchmark figure in tribology. Minor enhancements in international outreach and technology transfer visibility could elevate his already distinguished profile even further.

Publications to Noted📚

A prediction model of fluid–solid erosion wear in hydraulic spool valve orifice (Wear, 2024)

Authors: Li, D.; Liu, X.; Liao, H.; Bing, L.; Hou, P.; Nie, R.; Jiao, Z.

Citations: 12

Adaptive robust motion control for hydraulic load sensitive systems considering displacement dynamic compensation (ISA Transactions, 2024)

Authors: Qiu, Z.; Liu, X.; Wang, Z.; Chen, X.; Nie, R.

Citations: 1

Cascade control method for hydraulic secondary regulation drive system based on adaptive robust control (ISA Transactions, 2024)

Authors: Liu, X.; Wang, Z.; Qiu, Z.; Jiao, Z.; Chen, X.; Nie, R.

Comparative study on thermal-oxygen aging and tribological properties of carbon nanotubes and graphene sheet reinforced hydrogenated nitrile rubber composite materials (Journal of Materials Research and Technology, 2024)

Authors: Qian, C.; Wang, S.; Li, Y.; Nie, R.; Song, S.

Design and preparation of sulfur vulcanized polyamide 66 cross-linked nitrile butadiene rubber networked and its application in blending with graphene oxide (Materials Today Communications, 2024)

Authors: Li, X.; Li, Y.; Qian, C.; Wang, S.; Nie, R.

Experimental investigation of the annular gradient process for circular channels using laser powder bed fusion (Optics and Laser Technology, 2024)

Authors: Li, D.; Liu, X.; Hou, P.; Liao, H.; Yu, R.; Nie, R.; Jiao, Z.

Extended-state-observer-based pressure compensation anti-disturbance control method for hydraulic secondary regulation system (Nonlinear Dynamics, 2024)

Authors: Wang, Z.; Liu, X.; Mou, Q.; Qiu, Z.; Nie, R.; Jiao, Z.

Extended-State-Observer-Based Pressure Compensation Anti-Disturbance Control Method for Hydraulic Secondary Regulation System (SSRN, 2024)

Authors: Wang, Z.; Liu, X.; Mou, Q.; Qiu, Z.; Nie, R.; Jiao, Z.

Molecular dynamics and experimental study of mechanical and tribological properties of graphene-reinforced nitrile butadiene rubber–phenolic resin composites (Polymer Composites, 2024)

Authors: Li, Y.; Chen, Z.; Qian, C.; Wang, S.; Nie, R.

Simulation Analysis on Flow Field of Aircraft Hydraulics Bent Pipe with Guide Vane (Lecture Notes in Electrical Engineering, 2024)

Authors: Li, D.; Liu, X.; Nie, R.; Hou, P.; Liao, H.

Rui Nie | Tribology | Best Researcher Award

You May Also Like