Saadi Berri | Hydrogen Storage | High-Temperature Metallurgy Award

Dr. Saadi Berri | Hydrogen Storage | High-Temperature Metallurgy Award

Senior Lecturer at University of M’Sila | Algeria

Dr. Saadi Berri is a distinguished materials scientist specializing in computational and theoretical investigations of metallic and intermetallic compounds for high-temperature applications. His research employs first-principles calculations and density functional theory to explore the mechanical, magnetic, optical, and thermoelectric characteristics of advanced alloys, perovskites, and hydrides. Through systematic modeling of high-temperature phase stability, electronic structure, and thermodynamic responses, Dr. Berri provides predictive insights crucial for developing energy-efficient materials. His studies on Heusler and perovskite-type compounds have clarified the origin of half-metallicity, spin polarization, and thermal conductivity in ferromagnetic and thermoelectric systems. Additionally, his hydrogen storage analyses of borohydrides and complex hydrides advance the understanding of lightweight energy carriers suitable for extreme environments. He has published 69 peer-reviewed papers, amassing 2,131 citations and attaining an h-index of 26 on Scopus, underscoring his consistent research impact. His theoretical frameworks contribute substantially to the advancement of metallurgical science, particularly in the domain of high-temperature performance and functional material design.

Featured Publications

Berri, S. (2021). Half-metallic and thermoelectric properties of Sr₂EuReO₆. Computational Condensed Matter, 28, e00586. Cited by 143

Berri, S. (2022). Thermoelectric properties of A₂BCl₆: A first-principles study. Journal of Physics and Chemistry of Solids, 170, 110940. Cited by 134

Berri, S. (2015). First-principles study on half-metallic properties of the Sr₂GdReO₆ double perovskite. Journal of Magnetism and Magnetic Materials, 385, 124-128. Cited by 126

Berri, S. (2023). First-principles calculations to investigate structural, electronic, elastic, optical, and transport properties of halide double perovskites Cs₂ABF₆ (AB = BiAu, AgIr, CuBi, GaAu). Chemical Physics Letters, 826, 140653. Cited by 124

Berri, S., Ibrir, M., Maouche, D., & Attallah, M. (2014). Robust half-metallic ferromagnet of quaternary Heusler compounds ZrCoTiZ (Z = Si, Ge, Ga and Al). Computational Condensed Matter, 1, 26-31. Cited by 111

Huijie Zhu | Functional Materials | Best Researcher Award

Prof. Huijie Zhu | Functional Materials | Best Researcher Award

Professor at Luoyang Institute of Science and Technology | China

Professor Zhu Huijie is a leading environmental engineering researcher at Luoyang University of Technology, focusing on wastewater purification and sustainable sewage treatment systems. His research primarily revolves around the use of nanomaterials, particularly nanoscale zero-valent iron and photocatalytic heterojunctions, for efficient removal of heavy metals such as arsenic, molybdenum, and antimony from aqueous solutions. With 37 scientific publications, 954 citations, and an h-index of 10 on Scopus, Professor Zhu has established a strong international research presence. His significant works in Journal of Hazardous Materials, Nanomaterials, and Water explore adsorption mechanisms, catalyst design, and environmental remediation techniques. He has successfully translated laboratory findings into practical applications through more than ten large-scale sewage treatment projects, including high-capacity wastewater stations serving thousands of residents. Additionally, his authored books — “Solar Aeration-Reactive Wall-Stabilized Sediment Combined Treatment Technology for Black and Odorous Water Bodies” and “Schwertmannite Environmental Effects” — highlight his contribution to eco-friendly water management solutions. Professor Zhu’s work exemplifies the integration of fundamental research with real-world environmental engineering, advancing both the scientific understanding and technological implementation of green wastewater treatment systems.

Profile :  Scopus | ORCID

Featured Publications

Zhu, H., Fu, S., Zhang, H., Wu, X., Han, J., Ma, X., Rong, J., Chen, S., Chen, G., & Li, Y. (2025). Research on synchronous synthesis of schwertmannite for removal of Pb²⁺ from acidic wastewater. Crystals.

Wang, Y., Zhu, H., He, P., Li, M., Cao, Y., Du, Y., Wen, Y., Zhao, Y., Liu, X., & Song, Y. (2025). Two-dimensional silver bismuth oxide/bismuth molybdate Z-scheme heterojunctions with rich oxygen vacancies for improved pollutant degradation and bacterial inactivation. Crystals.

Fu, S., Chu, Z., Huang, Z., Dong, X., Bie, J., Yang, Z., Zhu, H., Pu, W., Wu, W., & Liu, B. (2024). Construction of Z-scheme AgCl/BiOCl heterojunction with oxygen vacancies for improved pollutant degradation and bacterial inactivation. RSC Advances.

Fu, S., Huang, Z., Wang, Y., Zheng, B., Yuan, W., Li, L., Deng, P., Zhu, H., Zhang, H., & Liu, B. (2024). Fabrication of a novel Z-scheme AgBiO₃/BiOCl heterojunction with excellent photocatalytic performance towards organic pollutant. Materials.

Shi, M., Zhang, Y., Hong, W., Liu, J., Zhu, H., Liu, X., Geng, Y., Cai, Z., Lin, S., & Ni, C. (2022). Mechanism of simultaneous lead and chromium removal from contaminated wastewater by a schwertmannite-like mineral. Environmental Science and Pollution Research.